應用在晶片電阻陶瓷基板下的面積計算與瑕疵檢測法-以顆粒電阻為例

鄭文瑋 台灣愛司帝科技股份有限公司 wade@mail.astiglobal.com 劉柏劭 台灣愛司帝科技股份有限公司 kipa@astiglobal.com.cn

摘要

本研究針對陶瓷基板晶片電阻上的瑕疵,利用電腦視覺技術提出了一個自動化的檢測方法。在晶 片電阻的製造過程中,常常因為產線機器的印刷油墨塗抹不均勻而產生瑕疵,這些瑕疵包含:印刷不 良、溢出與破損。而晶片電阻是電子儀器中相當重要的元件,假如出現上述的瑕疵,將會使電子產品 的壽命減短,甚至有可能造成無法預知的危險。現階段晶片電阻的製造商還是利用人工來做瑕疵判 斷,使用人工來檢測必須使產線機器暫停,所以只能採取抽檢的方式,不僅浪費人力,也無法保障產 品品質。所以本研究針對這樣的問題,提出一個自動化檢測方法,只需要使用成本較低的 CCD 鏡頭 與個人電腦,建立影像參數模型,就可自動對所有陶瓷基板做檢測,經由本研究實際在產線測試的結 果,平均每片基板的檢測時間只需要 0.27 秒,準確率幾乎達 100%以上,且不需暫停機台,達到了提 升效率、減少成本與提高品質三項目標。

關鍵字:陶瓷基板、瑕疵檢測、電阻

壹、前言

台灣是世界上生產被動元件的龍頭,市場佔有率逐年提高,產量更是達到一個前所未有的數字。 但近年來由於電子產品越來越輕薄短小,大部分的產品皆朝向「多功能,體積小」的趨勢,所以被動 元件的製作也越來越精細。

電子產品的尺寸越小,更貼近使用者,相對的品質就更加重要。近年來電子產品意外事件頻傳, 除了考量電路設計因素之外,電路元件的品質也是關鍵,尤其是在被動元件上,假如不能保持元件的 良率,很有可能造成無法預知的後果。

基於上述動機,本研究將提供一個應用在陶瓷基板晶片電阻下的瑕疵檢測法。

晶片電阻是使用絕緣的氧化鋁陶瓷作為基板,用網版印刷印上含有氧化釘的電阻膏,利用氧化釘 的含量決定電阻的大小,之後再印上保護用的薄層玻璃粉,經過高溫燒結後就成為晶片電阻[1]。

使用印刷技術很容易出現「印刷不良」、「溢出」以及「破損」等情形,再加上產線輸送帶間隔時間短,且通常一片基板上就包含數千個元件,如果使用人力檢測,只能採取抽檢方式,不僅沒有效率, 更浪費人力成本;假如使用硬體逐一檢測,成本負擔大,所以必須找到一個方法,增進檢測效率與節 省成本,進而提高元件品質。本研究之瑕疵檢測法就是基於成本於時間的考量,利用成本較低的 CCD 鏡頭與影像處理技術,能在很短的時間內對基板上所有元件進行檢測,達到提昇良率的目的。

PCB(印刷電路板)檢測已經發展出相當多的方法: M. Moganti 和 F. Ercal 在 1996 年提出了一個自動光學檢測的研究[2]; Teoh 和 Mital 利用 histogram 法建立影像灰階度圖表來判斷印刷電路板上的瑕疵[3]; 而 Loh 和 Lu 提出先將影像二值化後,紀錄標準影像與待測影像的掃描特徵為依據的比對法[4]。

檢測印刷電路板的研究雖然很多,但是針對晶片電阻的卻很少,雖然同樣是使用印刷技術製造的 被動元件,但要將檢測 PCB 的方法應用在陶瓷基板晶片電阻上卻不適合,所以本研究基於上述動機, 提出了一種針對晶片電阻的瑕疵檢測法,希望能夠實際應用在產線上,使企業不需採購昂貴的機器, 並能取代人工檢測,提高檢測準確率,達到增進效率、降低成本的目標。 一、流程圖

本研究是利用陶瓷基板上的切割線作為基準,利用影像差集(image difference)與影像補洞(image fill)為原理所進行的檢測,而影像的前處理,如擷取圖檔、影像校正、二值化等步驟,因為不是本研究所討論的重點,所以在本篇論文不詳加敘述。

本研究的大略檢測步驟分為幾個要點(詳細的數學表示式將在後面篇幅說明):

(一)、影像前處理:包含取像、影像校正、找出陶瓷基板切割線等等...。

(二)、建立參數模型:

1、設定基板上電阻的顆粒數,假設橫向顆粒個數為Xn,縱向顆粒數為Yn。

2、定義橫向遮蔽寬度p,產生橫向遮蔽區域 H_c ;定義縱向遮蔽寬度q,產生縱向遮蔽區域 V_c 。

3、定義警戒線寬度r。

- 3、定義二值化門檻值 t。
- (三)、計算面積:

1、利用 H_c - V_c ,得到電阻區域 C_l 。

2、計算每個顆粒數的平均面積。

3、利用平均面積判斷每個顆粒數,若低於平均面積,則為印刷不良。

- (四)、判斷溢出:
 - 1、利用門檻值T對影像二值化,得到二值化影像B。
 - 2、設定警戒線區域W, B∩W=D。

3、若D為空集合,則判斷正常;反之,則為溢出不良。

- (五)、判斷破損:
 - 1、將 B 做影像補洞(image fill),得到影像 F_t 。
 - $2 \cdot F_t \cap B = H \circ$

3、若H空集合,則判斷正常;反之,則為破損不良。

圖1:檢測流程圖

圖 1 為本研究的檢測流程圖,在此檢測中,應用到影像差集(image difference)與影像補洞(image fill) 之影像處理技巧,以下是影像差集與影像補洞之原理。

一、影像差集(image difference)[5]

假設 A 與 B 是不同的兩個集合,則集合 A 與 B 的差集運算定義如(1)式:

$$A - B = \left\{ w \mid w \in A \text{ and } w \right\} (1)$$

由圖 2 可以看出, 若將 A 集合與 B 集合做差集運算, 最後會得到 C 集合。

圖 2:影像差集示意圖

二、影像補洞(image fill)

影像補洞運算主要為消除影像中不必要的雜訊,即利用背影與物體灰階值替代方法之原理,以達 到消除雜訊的目的[6]。

首先將影像二值化,假設物體灰階值為255,背景灰階值為0,要刪除在物體內部的雜訊,當物體 內含有與物體灰階值與不同之區域時,將該區域內的灰階值設定成與物體相同,如圖3所示。

圖 3:影像補洞後的結果

如此一來就可以獲得完整的物體資訊,不受雜訊所干擾。

三、瑕疵定義

(a)印刷不良

(b)溢出

(c)破損

圖 4:元件瑕疵

一般在晶片電阻陶瓷基板上的瑕疵可分為印刷不良、溢出與破損三種,其各自的定義與相關影像 如下:

(一)、印刷不良:油墨過少造成電阻面積過小的情形,如圖4(a)所示。

(二)、溢出:油墨過多,印刷範圍已經超過電阻區域,如圖4(b)。

(三)、破損:電阻元件內部有破洞,如圖4(c)。

五、建立檢測模型:

(一)、取得影像來源:本研究的實驗是模擬實際產線中的環境,由CCD取得陶瓷基板影像後輸入。

(a)晶片電阻陶瓷基板影像

(b)放大後的電阻影像

圖 5: 陶瓷基板影像與放大後影像

圖5(a)為CCD實際取得之影像,而圖5(b)則為電阻放大後的影像。

圖 6:轉正後的基板影像

(二)、影像校正與畫出切割線:

雖然已經從CCD取得了產品影像,但是在影像外圍仍存在許多不需要的資訊,而且CCD鏡頭與產 品角度會有誤差,產品的擺放位置也不一定方正,所以要利用Homography[7]技術將基板部分轉正, 如圖6。

在基板上存在有許多切割線,其目的是用來切割元件,橫向切割線與水平軸平行,縱向切割線與 垂直軸平行,由於切割線的位置剛好介於電阻顆粒之間,可以當作檢測的基準,所以此步驟為找出切 割線。

圖 7:影像數學表示圖

以圖7的數學符號來表示,由於基板上的電阻顆粒數Xn、Yn為已知,所以每一個元件之間垂直間 隔wh與水平間隔wy如式(2):

$$w_{h} = w / X_{n} + 1$$

$$w_{v} = h / Y_{n} - 1$$
(2)

而切割線的數學表示式如式(3):

$$LH_{i} = y = iw_{h}, i = 0, 1, 2....X_{n}$$

$$LV_{i} = x = iw_{v}, i = 0, 1, 2....Y_{n}$$
(3)

圖8中的紅色線條為本研究所找出的切割線位置。

(三)、遮蔽區域:

找出切割線之後,即可利用切割線資訊、設定的橫向遮蔽寬度p與縱向遮蔽區域寬度q,找出橫向 遮蔽區域H_c與縱向遮蔽區域V_c。

橫向遮蔽區域的數學表示式如(4)式,以LH_i為中線,往上下各膨脹p個像素,形成一個帶狀區域,如圖9所示。

 $H_{c} = A_{LHi} : \{(x, y) \mid x \in [0, h], y \in [iw_{h} - p, iw_{h} + p]\}$ (4)

圖 9: 橫向遮蔽區域

縱向遮蔽區域Vc是介於元件與元件之間,以LVj為中線,往左右各膨脹q個像素所形成的帶狀區域,其 數學表示式如(5)式

$$V_{c} = A_{LVj} : \{(x, y) \mid x \in [iw_{v} - q, iw_{v} + q], y \in [w, 0]\}$$
(5)

圖10為縱向遮蔽區域Vc之示意圖。

圖 10: 縱向遮蔽區域

利用上述兩個遮蔽區域,就可以利用(6)式找出電阻元件的區域 C_1 :

$$H_c - V_c = C_1$$
 (6)

由於基板上的電阻顆粒數 X_n 、 Y_n 為已知,就可以利用 C_1 計算出元件的平均面積 $Area_{avg}$,如(7) 式所示。

$$C_1 \text{Pixels} \div (X_n \cdot Y_n) = Area_{avg} \quad (7)$$

(四)判定印刷不良:

已知電阻元件的平均像素面積 Areaavg,可設定一個「誤差容忍百分比 Err」,針對每一個元件

的面積 Area_{ij}和平均面積 Area_{avg} 做比較, 假如小於平均面積且大於誤差容忍百分比 Err, 則判定該元件「印刷不良」。

if
$$Area_{ij} > Area_{avg}$$
, $i = 1, 2, 3...X_n$, $j = 1, 2, 3...Y_n$, 印刷不良(8)

(五)判定破洞:

將 C₁影像利用門檻值 t 二值化,得到二值化後的區域影像 B,將 B 做影像補洞(image fill) 後得到影像 F_T,利用下列式(9)即可找出破洞。

$$B-F_t = H$$
, if $H \neq \emptyset$,元件破洞(9)

(六)判定溢出:

設定警戒線 Awu 與 Awd, Awu 位於電阻元件上方, 而 Awd 位於元件下方, 但不觸碰到元件, 數學表示如(10)式

$$A_{wu}: y = i(w_h - r), \ i = 0, \ 1, \ 2, \dots X_n$$

$$(10)$$

$$A_{wd}: y = i(w_h + r), \ i = 0, \ 1, \ 2, \dots X_n$$

警戒線如圖 11 所示。

圖 11: 警戒區域示意圖

利用警戒線 Awu和 Awd與 C1 區域做交集後,得到集合 O1 與 O2,若集合 O1 與 O2 同為空集合,則表示沒有溢出;有其中一個不為空集合,則表示溢出,如式(11)。

 $A_{wu} \bigcap H_c = O_1$ $A_{wd} \bigcap H_c = O_2 \tag{11}$

if $O_1 \neq \emptyset$ or $O_2 \neq \emptyset$, 溢出

参、研究成果

本研究的主題在於提出一個自動化的晶片電阻瑕疵檢測法,利用CCD攝影機擷取影像,並將擷取 之後的影像做檢測,以判斷該基板上的元件是否出現瑕疵。

檢測所使用的硬體包含:

- 1. 灰階的CCD攝影機、鏡頭。
- 2. 影像擷取卡。
- 3. 個人電腦(P4 3.0G 記憶體512MB)。

在軟體方面則是使用Microsoft Visual C#與MVTec Halcon影像函式庫做為開發工具,檢測程式介 面如圖12所示。

检测结果 7			檢測視窗			
			放大倍率	IX		~
肛槓 1	羅 万 福出	儲存參數 離開程式				
			telle line	10.00		
主視窗			A Marked and	and and and		
1000						
				0.0.01		
			11 15-30 10		CIRINARD	
Mana Sport New Sector Links Milling Sports, Sports, Sports, Sports, Sports, Sports, Name Sports, Sports,	when sinks which place back have save back back a ment many strain many many many back back along a ment have strain many many many back back along a	AND MADE NAME AND AND AND AND AND AND	XWI	22 2	最大值: 0	
			Chip Will	58	最小值: 0	
And the second second		AND DOOR DOOR DOOR DOOR DOOR DOOR	每個Chip上的Cl数	: 4	平均數: 0	
		AND DOT THEY THE THE DOC DOC STORE SHOEL	總檢 湖 倒數:	5104	標準蓋: 0	
			參數設定			
No. and the set of the set			检测修件 參數說	定 印刷不良	御汚資訊 溢出 統計	資訊
		ten den den ten en ber ing bes	C1版装門框	56		
Anna Sona Socia Socia Socia Mana Salata Anna Salata Salata Anna Socia Sana Terra Socia	And here and here and here and here here here a	And the local solar local base base base and them back local base base base base and the local base base base base	C1画截	1	6	
		NAME AND ADDRESS OF ADDRESS ADDRES	斯拉丽斯容别	10		a
			Martin de la	10		
			前行大小	10		
			頭尾面積比	50	3	%
Main Area provident factor	Anna and allo and and allo and and and a	AND AND AND AND AND AND AND AND AND				
AND AND DOOL DOOL OF A						
		NOT THE SEC THE ACCURATE AND ACCURATE AND ACCURATE AND A REAL PROPERTY				
		AND DATE WAT BALL LAND AND AND AND	初能按照	0	自動操作還項	5
Man Share New York York	and and any one and one and one and one and	and poor over their land that their land	請取檔案	執行檢測	日日和松田	
000	Y	228L 000 P	All Alls afree Alls	ALC: N. M.	□ 錯誤停概	
			27 70 AU (20	MATER OF BEING		

圖 12: 檢測程式介面

檢測所使用的影像資訊與模型參數如表1:

表1:實驗參數表						
撷取影像大小	4096 pixels × 4500 pixels					
轉正後影像大小	3000 pixels × 3600 pixels					
橫向顆粒數X	88					
縱向顆粒數Yn	36					
横向遮蔽區域寬度p	29 pixels					
縱向遮蔽區域寬度q	4 pixels					
警戒區域寬度r	41 pixels					
門檻值t	120					

實驗的目的在於測試本研究檢測法的時間與準確性,首先輸入100張~500張無瑕疵影像,觀察其 檢測時間:

 数量(張)
 100
 200
 300
 400
 500

 時間(Sec)
 平均檢測時間
 0.2711
 0.27664
 0.27194
 0.26657
 0.27164

表2、無瑕疵影像平均檢測時間表

接著輸入100張有瑕疵的元件影像,其平均檢測時間為02721秒,由此數據可以發現,無論產品是 否具有瑕疵,都不會影像本研究檢測法的檢測時間。

將500張正常影像與100張瑕疵影像混合,以試驗檢測法之準確性,其結果如表3:

總檢測數量(張)	100	200	300	400	500	600					
找出的瑕疵張數											
瑕疵影像	13	35	50	81	92	100					

表3、準確率檢測

由表3可看出本檢測方法準確率幾乎達100%。

肆、結論與建議

本研究利用機器視覺技術、基本的集合運算和模型比對法提出一種在陶瓷基板上的晶片電阻檢測 法,主要的目標是利用自動化設備與影像處理技術來達成元件瑕疵檢測,藉此改善人工檢測所造成的 疏失、並提高檢測效能與提昇檢測速度。

經由實驗數據可看出不論是在檢測時間或是準確度上,都達到良好的效果,能夠將每一片陶瓷基板的檢測時間控制在0.27秒左右,且準確率幾乎達100%,即使是加上CCD掃描影像的時間,也不超過2秒,所以能夠實際應用於產線上。

但在本研究所提出的方法中,模型參數的建立佔了很重要的地位,假如設定的參數不良,就會大 大影響到檢測的時間以及準確度,這是未來需要改良的方向,期望在不遠的將來,能夠完全不需要人 工設定,達到全自動化檢測的目標。

伍、參考文獻

- [1] 李賢學、周更生(2002),陶瓷被動元件,科學發展,359,34-37。
- [2] E.K. Teoh, D.P. Mital, B.W. Lee, L.K. Wee(1990), "Automated Visual Inspection of Surface Mount PCBs," *Industrial Electronics Society*, 16th Annual Conference of IEEE, Vol. 1, pp. 576-580.
- [3] Horng-Hai Loh, Ming-Sing Lu(1999), "Printed Circuit Board Inspection Using Image Analysis," IEEE Transactions on Industry Applications, Vol. 35, No. 2, pp. 426-432.
- [4] M. Moganti and F. Ercal(1996), "Automatic PCB inspection algorithms : a survey," Computer Vision and Image Understanding, Vol. 63, No. 2, pp. 287-313.
- [5] Gonzalez, R. C. and R. E. Gonzalez(1992), Digital Image Processing, Addison-Wesley.
- [6] 鄭人嘉(2003),影像處理技術應用於種蛋孵化過程監測之研究,國立中興大學生物產業機電工程學系 92 年 碩士論文,31-32。
- [7] C.-Y. Tang, H.-L. Chou, Y.-L. Wu and Y.-H.Ding(2006), "Fast and Robust Algorithm Using Coplanar Constraintsto Estimate Fundamental Matrices,"2006 IEEE International Conference on Systems, Man and Cybernetics SMC2006).