聯盟會員登入
公司會員
公司統編: -
密碼:
登入修改會員資料
加入會員
聯盟會員登入
公司會員
護照號碼:
密碼:
登入修改會員資料
加入會員
聯盟會員登入
公司會員
身分證字號:
密碼:
登入修改會員資料
加入會員
聯盟組織
最新會訊
技術討論
技術專欄
推薦書單
簡報講義
 
 
  AOIEA 自動光學檢測設備聯盟 技術論壇
友善列印 go
 
 
關於AOIEA
活動看板
產經情報
知識分享
技術能量大觀
廠商名錄
伯樂良駒
需求快遞
電子報專區
AOI網站連結
聯絡秘書處
     



瀏覽次數 : 117619451次
 
首頁 >> 知識分享 >> 技術專欄
日期:2017/08/13
標題:利用全像攝影和深度學習於炭疽病孢子光學快篩
線上投稿
作者:   YoungJu Jo等
文章出處:   Science Advances
關鍵字:  
內容:   Establishing early warning systems for anthrax attacks is crucial in biodefense. Despite numerous studies for decades, the limited sensitivity of conventional biochemical methods essentially requires preprocessing steps and thus has limitations to be used in realistic settings of biological warfare. We present an optical method for rapid and label-free screening of Bacillus anthracis spores through the synergistic application of holographic microscopy and deep learning. A deep convolutional neural network is designed to classify holographic images of unlabeled living cells. After training, the network outperforms previous techniques in all accuracy measures, achieving single-spore sensitivity and subgenus specificity. The unique “representation learning” capability of deep learning enables direct training from raw images instead of manually extracted features. The method automatically recognizes key biological traits encoded in the images and exploits them as fingerprints. This remarkable learning ability makes the proposed method readily applicable to classifying various single cells in addition to B. anthracis, as demonstrated for the diagnosis of Listeria monocytogenes, without any modification. We believe that our strategy will make holographic microscopy more accessible to medical doctors and biomedical scientists for easy, rapid, and accurate point-of-care diagnosis of pathogens.
參考網址:  
原始文章連結
檔案下載:  
請點選參考網址 下載次數:15次

回上頁

 
Copyright © 2007 自動光學檢測設備聯盟
聯絡人:沈元斐電話:(03)573-2225傳真:(03)572-0621地址:300新竹市光復路二段321號3館204室工研院量測中心/AOIEA 秘書處