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Some scenarios require performance estimation of an imaging or a computer vision system prior to its actual
operation such as in system design, as well as in tasks of high risk or cost. To predict the performance, we
propose an image-based approach that accounts for underlying image-formation processes while using real im-
age data. We give a detailed description of image formation from scene photons to image gray levels. This
analysis includes all the optical, electrical, and digital sources of signal distortion and noise. On the basis of
this analysis and our access to the camera parameters, we devise a simple image-based algorithm. It trans-
forms a baseline high-quality image to render an estimated outcome of the system we wish to operate or de-
sign. We demonstrate our approach on thermal imaging systems (infrared spectrum, 3—5 um). © 2007 Optical

Society of America
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1. INTRODUCTION

Some scenarios require performance estimation of an im-
aging or a computer vision system prior to its operation.
One scenario is system design, which requires setting of
various optical, electronic, and algorithmic specifications.
There is a need to know how settings affect the system
output and consequently how the system design should be
altered. Another scenario is high-risk operation, where
actual operation should preferably be avoided unless a
successful outcome is likely. Such is the case with dispos-
able systems such as space probes or guided missiles as
well as with intrusive medical imaging operations. Thus,
our work focuses on estimating the output of imaging and
computer vision systems as if they view typical scenes,
without actual operation. The contributions of this paper
are as follows:

1. Introduction of the problem, as described above:
pointing out cases and a need for forecasting an image
and performance of subsequent computer vision prior to
actual acquisition by an intended system.

2. Introduction of an effective solution to the problem.

System analysis has used physics-based methods. It at-
tempts prediction simply by looking at numeric specifica-
tions of the imager [1-3] and couples them to various fig-
ures of merit [4-7]. Another physics-based method
simulates synthetic scenes and then renders them based
on the sensor specifications [8-10]. These methods may
face difficulty in accounting for the complexity and unpre-
dictability of real-world scenes. This difficulty exists par-
ticularly beyond the visible spectrum, where computer
graphics models have not matured.

A related matter is image-based rendering. It may ren-
der the output of the imager in question. Here the input is
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high quality (HQ) images of real scenes taken by a dedi-
cated system. These images can be aberrated to render
the output, which is particularly useful when the system
we need to design or operate is of low quality (LQ). In-
deed, sensors used in disposable systems or intrusive in-
struments often have LQ due to space, weight, and price
constraints. Related image-based methods (termed
example-based in this context) include texture synthesis
[11-13] and image analogies [14-16]. These methods cur-
rently require learning of the cross-modal transformation
every time; they are iterative and thus computationally
complex. Moreover, they might yield unsatisfying results,
since the operations they perform do not always match
the operations performed by the systems.

To counter the drawbacks of previous methods, we pro-
pose a hybrid approach. It is image based, but it exploits
knowledge of the physical and electronic processes occur-
ring in imaging systems. Hence, we use a HQ system to
measure the scene and then use a physics-based algo-
rithm for transforming the HQ image into an estimated
output, of the LQ system. We analyze the fundamental
processes and the inner workings of both systems, produc-
ing a unified model of an imaging process that is appli-
cable to a wide variety of imaging modalities. This model
is used for image-based rendering and subsequently for
grading a computer-vision task.

As a case study, we examine a thermal imaging seeker
mounted in a missile. Hence, some of the optical effects
we address apply in general to thermal imaging
[1,17-19]. Being on a disposable missile and constrained
by price, space, and weight, this imaging system has LQ.
This system cannot be operated at will: It is cooled by un-
recycled gas, and hence once the gas is depleted (a short
time after activation) the system becomes useless. As a re-
sult, it is preferable to avoid activation before there is a
prediction that this LQ system can lock on targets in the
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scene. We perform this estimation using an accompanying
thermal sight. The thermal sight is an HQ system, since
it is not disposable and not compromised by the men-
tioned constraints. We use these systems to demonstrate
this approach in experiments. In addition to visual dem-
onstration of the rendering, we study how the trans-
formed image helps in predicting the system’s perfor-
mance, such as in a lock-on task.

2. SCENE PHOTONS TO A GRAY-LEVEL
IMAGE

This section explains the evolution of the scene photons,
from the stage at which they leave the scene and enter
into the imaging system until their representation as a
gray-level image. Some parts of this path have often been
described [20-23] in isolation from the other parts. Here
we present the complete path.

An imaging system is commonly composed of an optical
assembly, a detector module, and signal processing elec-
tronics. The imaging process can be described as a func-
tional flow diagram, as depicted in Fig. 1. The input to
any imaging system is a two-dimensional (2D) scene radi-
ance L*(x,y) in units of [photon/cm? um sr s]. Here (x,y)
are the spatial coordinates and \ is the wavelength. The
optical assembly gathers the scene radiance onto the de-
tector array. The detector module converts the radiation
(photons) into an electrical signal, which enters a signal
processing unit. This unit enhances the signal and con-
verts it into the output image of the particular system. A
typical output is an 8 bit image matrix I, (m,n) [gray
level]. Note that we use (x,y) to express continuous spa-
tial coordinates and (m,n) to express discrete row and col-
umn coordinates.

In this section we describe each process in context. As
an example, we sometimes refer to two types of thermal
imaging systems. The HQ system is a staring system,
which uses a 2D detector array. The LQ system is a scan-
ning system having a one dimensional (1D) vertical detec-
tor column array. This vertical column array sweeps the
scene horizontally.

A. Optical Assembly

An optical assembly induces all the effects that occur be-
tween the outer world (scene radiance) and the detector.
This assembly is commonly built of focusing optics, possi-
bly a scanning mirror, a filter, and a cold shield. The fo-
cusing optics (typically lenses) collect the scene radiance
and project it onto the detector plane. In scanning sys-
tems, a mirror sequentially scans the detector swath over
the scene to produce a 2D image. The scanning mirror is
used in conjunction with column detector arrays. The fil-
ter specifies the spectral range for imaging. In thermal
imaging this filter is cooled so that it practically does not
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Fig. 1. Functional flow diagram of an imaging system.
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Fig. 2. Functional flow diagram of an optical assembly.
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Fig. 3. Different contributions to the photon irradiance on the
detector. Tracks of different contributions are in different line
styles.

radiate (hence, it is termed a cold filter). In addition, in
thermal imaging, the detector might sense radiation
emitted from the body of the system. This radiation is ob-
structed from reaching the detector, using a cold shield.
As depicted in Fig. 2, the effects of the optical assembly
can be decomposed as projection, blur, and ambient radi-
ance processes. In the following, we explain each subpro-
cess.

1. Radiance Projection and Blur

The main role of an optical assembly is to project the
scene radiance onto the detector. As depicted in Fig. 3, the
scene radiance is gathered through a solid angle Qg
:Aopt/Rz [sr], where A, is the area of the optical aper-
ture and R is the distance to the scene. The radiance
L{*(x,y) is then projected onto the detector with a mag-
nification ratio a=f,,/R, where f,; is the focal length of
the optics. The solid angle set by the optics toward a de-
tector element is Qopt:Aopt/}‘%ptz(1/(7L2)QScn [sr]. The
scene contribution to the irradiance on the detector is
thus

) xy photon
EEYOJ(xyy) = Qopt icn EDE Topt()\) N K (1)
aa cm”- um-s

where 7,,¢(\) is the transmittance of the optics.

The projection is not perfect, since the optical elements
create blur. This is expressed as a convolution with a
point spread function (PSF), hqp(x,y)

El)zlur = hopt * E£r0j, (2)
where Eﬁmj is given by Eq. (1). For scanning systems,

hopt(x,y) includes scan blut, hge,n(x) caused by horizontal
motion with velocity vy, during the integration time ¢,

(i)
Rgean(x) = rect . (3)

vscantint
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2. Ambient Radiance

Systems may sense a radiance component that is not di-
rectly related to the scene in view. In thermal imaging,
this radiance comes from the camera body and from the
optics. Figure 3 depicts the different radiance contribu-
tions to the photon irradiance on the detector. The camera
body is hot, and thus it radiates. While most of this radia-
tion is blocked by a cold shield, part of it may reach the
detector directly, contributing Ei"’dy to the photon irradi-
ance. In addition, some of the camera body radiance is re-
flected by the optics toward the detector, contributing Ef\ﬂ
to the photon irradiance. Furthermore, the optics is hot
and radiating, thus contributing E%* to the photon irra-
diance. All the above-mentioned contributions add up to
the total spectral photon irradiance [24,25] beyond E];l“r
derived in Eq. (2),

ES(x,y) = BN (x,y) + EX°Y + BT + ESP, (4)

in units of [photon/cm?/um/s]. To calculate these radi-
ance contributions we use the temperature of the camera
body T, and the Planck equation [22,24,25]:

cs photon
4 co/NT 2 J (5)
A (e?Mb—1)| em®- um - sr- 8

L\(Ty) =

where cy=14388 um °K, ¢5=1.8837x10%% um?/(cm?-s).
Normally T, is near the ambient temperature (which is
much hotter than the detector arid cold shield), while in
high-speed missile flight it may be much hotter. More de-
tails are given in Appendix A.

B. Detector Module
In Subsection 2.A we have discussed the photon irradi-
ance on the detector plane. A detector converts the photon
irradiance [Eq. (4)] into an electrical signal. As depicted in
Fig. 4, the detector function can be decomposed into pho-
todetection, cross talk, sampling, noise, and readout
mechanisms. In the following, we describe each process.
Our systems use photovoltaic detectors. Electrons are
excited in response to photon irradiance. They are accu-
mulated on a capacitor during an integration time. After
integration, the voltage over the capacitor is read. Photo-
detection expresses the excitation rate of electrons in the
detector material in response to the photon irradiance for
quantum efficiency 7g(\)[e/photon]; this rate is
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Ldark

qAq

NE(x,y) = J E{ () gV dX + (6)

X

in units of [e/cm?-s], where Efet(x ,y) is given in Eq. (4).
Here, i4,, is the dark current at a detector element, q is
the electron charge, and Ay is the effective area of each
detector element.

Photogenerated electrons may drift across the detector
array, creating cross talk. This is expressed as a convolu-

tion of N, defined in Eq. (6), with a 2D PSF (a 1D PSF
for a 1D column detector array) Ay (x,y)

. . e
Ne(x,y) =hxtk*N§en |: 2 :| . (7)
cm® - s

This PSF can be provided by the manufacturer or it can
be precalibrated in the laboratory in the detector level.

At this stage, we have an instantaneous distribution of
charges on the surface of the detector array. This distri-
bution is integrated in each detector element area Ay and
in time ¢;,; (integration time). The integrated signal is
sampled by the array pitch (Axq,Ayq),

N(x,y)dxdy [e], (8)
Aq

Nzamp(m’n) = tintf

where Ne is given in Eq. (7). This operation can be ex-
pressed as

NP (m,n) = A gtind Paet * Ne](x ) Lel, )

nYm

where the PSF of the detector element shape hgq(x,y) is a
rectangular window of size a X 8 [um]

hget(x,y) = rect(x/a,y/B). (10)

Equation (9) also expresses sampling by the array pitch
(Axq,Ayq):

x,=Mn-1/2)Axq, y,=(m-1/2)Ayq,. (11)

We now have samples of charge N5*™P(m ,n) collected in
each detector element. This charge is linearly translated
into a voltage V(m,n) by

Vread(m’n) = quamp(m’n)/C [V]7 (12)

where C is the capacitance of the readout capacitor. In
some systems, there is a readout capacitor for each detec-
tor element. In others it is common to a set of elements (in

Readout
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Fig. 4. Flow diagram of a detector module.
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Fig. 5. Image-processing flow diagram (a) in the HQ system, (b) in the LQ system.

a CCD there is typically a single readout capacitor, which
processes the whole array).

Detection is a noisy process. This is modeled as an ad-
dition to Eq. (12) of a white-noise matrix Vg iso(m,n) with
standard deviation (STD) vy gee:

Vim,n) = V,eaa(m,n) + Vysie(m,n) [V]. (13)

This noise is composed of shot noise, spatial noise, and ex-
cess noise. The shot noise vy, has STD [20,22,26]

q —
Vshot = 5 \”Nzamp [V] . (14)

In addition, spatial noise expresses the nonuniformity of
the detector array. This nonuniformity is precalibrated
and is compensated for in a postprocess, called nonunifor-
mity correction (NUC). Nevertheless, NUC is not perfect,
and some residual nonuniformity (RNU) remains. This is
expressed as spatial noise with STD vgny [volt]. There are
additional noise sources, including readout amplifier
noise and digital quantization noise. Their overall STD is
expressed as Veyeess [V0lE]. The total noise STD is thus

[-2 2
Vnoise = \ Vshot T VRNU T Vgxcess [V]. (15)

C. Internal Signal Processing Module

An internal signal processing module converts the read-
out voltage on the capacitor V(m,n) into the output image
of the imaging system I,,;(m,n). In contrast to previous
processes, this process is unique to each system brand.
Figure 5 shows the flow diagram of this module for the LQ
arid the HQ systems that we examine.

Most systems use standard, linear analog-to-digital
conversion (ADC) and dynamic range compression (DRC)
for display. The ADC for b bits in our systems is linear for
Ve[ Vmin> Vimaxl, Wwhere V.. and V.. are constants of
each system brand:

I b V(m,n) - Vrnin
n)=|2°-1)——m————|. 16
p(m,n) =|( ) Vo v (16)

Values beyond or above that are assigned 0 or (2°-1) re-
spectively. The values in I(m,n) are quantized.

As for the DRC, our systems use a linear global gain, g,
and a global offset, o, to achieve the conversion to 8 bits
for display:

IOut(myn) =|—glb(m}n) +0]- (17)

The parameters g and o are determined in real time so
that the histogram is stretched over the dynamic range of
the display. In addition to the ADC and the DRC, the par-
ticular LQ system we use employs median subtraction
prior to the ADC, as explained below. It also employs line
interpolation after the DRC to achieve a standard output

format I, (m,n). The detector has only 120 elements;
therefore it outputs 120 rows. To achieve standard Na-
tional Television Systems Committee field format (1 field
=240 rows) a new row is created between each two rows,
that is the average of the two rows.

Median subtraction in scanning systems. The thermal
readout V(m,n) given in Eq. (13) has a relatively large dc
contribution when imaging an outdoor scene. This is be-
cause in most natural terrestrial scenes, the intrascene
temperature variations are small: O(1°K) relative to a dc
temperature of O(300°K). It is beneficial to omit the dc of
the continuous signal to make the subsequent ADC more
effective, as ADC would concentrate only on the varia-
tions. For this reason, scanning thermal imagers often
use [27,28] an analog median subtraction as described be-
low.

The LQ system we work with has a vertical array of de-
tector elements, which scans the 2D scene horizontally.
Each detector element produces a scanned signal as it
traces a row. The median value of each row is subtracted
from the readout values of that row by an analog circuit.
We note that the data are digitized temporarily to calcu-
late the median value. Then the subtraction is imple-
mented by an analog circuit over the continuous signal.
Consider row m with n,,,, elements. The voltage in that
row is

V,,=[V(m,1), V(m,2), ... V(m,nma)], (18)

where V(m ,n) is derived in Subsection 2.B. The median of
this set of pixels is

d,, =median(V,,). (19)
The median subtraction operation is then
Vil |d1
vmed=| o) (20)
Vul [du

where M is the number of matrix rows. Hence, for our LQ
system we use V¢4 instead of V(m,n) in Eq. (16).

3. CROSS-SENSOR TRANSFORMATION

As explained in Section 1, we wish to predict the perfor-
mance of an LQ system, using an HQ image. We do it by
simulating an L.Q image I (1;3 by transforming an input HQ
image I''9. This transformation is based on the param-
eters of the HQ system. These include temporally chang-
ing parameters (which are extracted from the system
with the video output) such as DRC parameters (g and o),
integration time tilfl?, and body temperature TEQ. Other
included parameters are constants of each system (which
are specified by the manufacturer or precalibrated in

laboratory) such as focal length, detector pitch, amplifier
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capacitance, and optical parameters. Here, we assign an
LQ or HQ label to some variables to distinguish between
the systems.

The transformation starts by inverting the operations
of the HQ system. This yields an estimate of the scene ra-

diance L5 [photon/pixel/s]. We may then apply the op-
erations of the LQ system. This yields an estimation of

the LLQ image, j{ﬁ(m,n).

A. Overcoming Some Pitfalls

We need to overcome some pitfalls in the transformation
process. Some processes described in Section 2 operate on
continuous signals, whereas the HQ data is already
sampled and quantized. Special attention should be paid
to inversion of blur operations as in Egs. (2), (7), and (9),
since deblurring is an unstable operation. In addition,
any HQ image includes noise and aliasing, which cannot
be inverted. In the following, we address these pitfalls.

1. Overcoming Deblurring Instability

A transformation that inverts the HQ operations esti-
mates the scene radiance. However, we are not interested
in the estimation of the scene radiance: This is just an in-
termediate stage to estimate the LQ image. By definition,
an LQ system has lower optical and detector qualities
than those of an HQ system. For this reason, as depicted
schematically in Fig. 6, the blur operators of the L.Q sys-
tem (HQ in the frequency domain) are more band limited
than those of the HQ system (HYQ); i.e., the cutoff fre-
quency of the L.Q system is lower than that of the HQ sys-
tem. Therefore, unstable frequency components in a de-
blurred IEI% are nulled in the overall process. Thanks to
this observation, we null the values corresponding to fre-
quencies outside the passband of the LQ system before
applying deblur operations to the HQ data. To demon-
strate the difference between the blur operators of the
systems, Fig. 7 (below) depicts the optical PSF's of the HQ

Fig. 6. Stability of a deblurring operation. Top, schematic plots
of the blur frequency responses of an L.Q system and an HQ sys-
tem. Bottom, a schematic plot of an inversion of an HQ blur op-
eration, proceeded by an LQ blur operation. On its own, inver-
sion of HHQ is unstable at high frequencies. However, subsequent
application of H'Q results in a stable operation.
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Fig. 7. Optical and cross-talk PSF's. The figure presents 1D pro-
files of hﬁf@, h0L§ and hlI® as well as the horizontal pitch of both
systems (30 um). The optical blur of the LQ system is stronger

than that of the HQ system.

system and the LQ system.

2. Sampled Data

Our data have already been sampled by the HQ detector.
We do not reconstruct the continuous signal. This means
that analog blur operations such as optical blur, cross
talk, and detector spatial integration should be matched
to the sampling dimensions (Axq,Ayq). Hence, we use

h(m,n) = h(mAyg,nAxy), (21)

where A is a general continuous blur PSF as in Egs. (2),
(7), and (9).

3. Noise

Noise is an additional issue. When we invert the HQ op-
erations, we cannot invert the noise addition, due its ran-
domness. However, we found a way to circumvent this
problem. Let us consider an arbitrary signal s with noise
STD v. Suppose we wish to render the signal §, whose
noise STD is 7> ». There is no need to denoise the signal
s. Rather, we should add some noise to simulate §. Explic-
itly, we should add noise with STD of v#2—12. Our case is
similar: Our goal is to render an LQ image with realistic
noise rather than denoising an HQ image. The noise STD
of an L.Q image is larger than that of an HQ image. There-
fore, it is possible to add noise to the estimated L.Q image
such that its STD is equal to a true LQ image noise.

To achieve this, we first calculate the HQ noise STD,
9 using Eq. (15). For a moment, we ignore this noise
during the cross-sensor transformation (i.e., we do not re-
move the noise). As we go along the transformation, we
concatenate all the factors that multiply the image (detec-
tor element area, integration time, etc.),

LQ ,LQ =LQ (L
CHRAFR 8 77QQ Qo;?t TE‘th 22)
K=""LQ 4 HQ HQ =HQ o H :
G A 7 L A

The factor « expresses the amplification that +2_under-
goes in the cross-sensor transformation. When noise is
added to the estimated L.Q image, we do not use 9 g

noise
the noise STD. Rather, we use
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e =

noise — noise

2 (khid )2 (23)

noise

to subtract the HQ noise effects. As explained above, this
operation is possible, thanks to the fact that

LQ
Vnoise

> xhQ (24)

noise*

4. Aliasing

Aliasing may be created in the sampled image V(m,n) if
the continuous image N,(x,y) contains spatial frequencies
that are higher than the sampling frequency of the detec-
tor. Aliasing in the HQ image cannot be inverted, if it oc-
curs. When the sampling frequency of the system sur-
passes the Nyquist frequency dictated by the optics and
other presampling filters, there is no aliasing. In the fol-
lowing, we explain the transformation process step by
step.

B. Inverting the HQ Operations
We attempt to invert as much as we can the operations of
the HQ system, presented in Section 2 in reversed order
(excluding treatment of noise, for the moment). We start
by inverting the internal signal processing of the HQ sys-
tem. This involves (beside quantization noise) two linear
scale operations, ADC and DRC [Egs. (16) and (17), re-
spectively]. The signal processing of the HQ system is
easy to invert once the parameters of the operations are
known, resulting in the estimated detector readout
VHQ(m , n). Note that VHQ(m ,n) is not an analog signal as
is VHQ(m n). We just rescale the values.

We then invert the detector operations to estimate the
photon irradiance (per sample). Inverting the readout op-
eration is simply a multiplicative scale:

NEQsam2 (g 7) = CHAVHR(m, n)/q [e]. (25)

As discussed above, we do not invert the noise addition,
yet we calculate 9 - from Egs. (13) and (15) based on

noise
NHQsamp 554 continue with the inversion. Moreover, we
do not invert the sampling operation. We leave the signal
sampled as the HQ system has sampled it.
Next, we invert the PSF of the detector. There are vari-
ous deconvolution methods. For instance, using Fourier
analysis, the electron generation rate is therefore

. 1 ]_-NHQ,samp
A e
Nf= g —— |, (26)
Lint FhiQ
where F represents the discrete Fourier transform (recall

that we null the frequency components of NEQ that are
outside the passband of the LQ system). Subsequently,
the detector cross-talk blur is inverted:

PN

NHQgen _ 71 (27)

FREQ |
These calculations exploit the sampling done in Eq. (21).
which lead to discrete PSFs A.

Finally, we estimate an inversion of the photodetection
process [Eq. (6)]. At this stage, note that the spectral in-
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formation is lost. However, in the systems we use, the
spectral quantum efficiency 7g(\) is rather uniform at the
relevant spectral region. Hence, the average quantum ef-
ficiency, 7;gQ is used. Following Eq. (6), the photon irradi-
ance on the detector is estimated as

E?e?(m,n) = 5

Q

NEQEn (1) — % /g [ photon
. (28)
s

The last operations to be inverted axe those of the op-
tical assembly (Subsection 2.A). First, we compensate for
the extra radiance originating from system body tempera-
ture. The radiance contributions are calculated using the
equations in Appendix A, integrated over each sample
area A?Q and over the spectral response ngQ()\). There-
fore, instead of the spectral radiance contributions

E,(x,y), we calculate
photon
. (29
s

E(m,n)=AlR f
Thus, the estimated blurred scene contribution is

%%mmmﬂ{
X

Ef2(m,n) = Ef¥m,n) -ENQ-EXR-EFS . (30)

Next, the optical blur [Eq. (2)] is inverted in the Fourier
plane:

AHQ
blur

A H -
Fhid

Hi 1
ER=F

(31)

Finally, we invert the scene projection operator [Eq. (1)] to
estimate the scene radiance:

Eg%(m,n) { photon}

Ls(m,n) = (32)

HQ

opt Topt TF Sr-s

C. Applying the LQ Operators
In Subsection 3.B we have inverted the HQ operations
(excluding noise and sampling) to estimate the scene ra-

diance ﬁscn(m,n). This is the input to the next phase,
where we apply the LQ operations to estimate the desired
output i{;ﬁ These operations involve the operations dis-
cussed in Section 2 with the modifications discussed in
Subsection 3.A.

Specifically, we add noise to the simulated image as
given in Eq. (13). The noise STD is calculated as described
in Egs. (22) and (23).

4. EXPERIMENTS

A. Experimental Setup

To demonstrate the approach, we use images taken by a
disposable thermal seeker, which is part of a guided mis-
sile. This is the LQ system. The HQ images are acquired
by an HQ thermal camera. The LQ system uses a 1D col-
umn array detector of 120 elements (30 um X40 um
each), which scans the scene horizontally to give a field of
view of 2.3° X 1.7°. The integration time £-% is set by the

scanning to 64 us. The HQ system uses a 2D matrix de-
tector with 240 X 320 elements (30 um X 30 um each) giv-
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ing a field of view of 2° X 1.5°. Here, tEl? is set adaptively
by the scene. The spectral range covered by both systems
is 3—5 um.

We received images (kindly supplied by the manufac-
turer, Rafael Ltd.) of different scenes grabbed concur-

1 T,

o0 10
f [cy/mrad]

Fig. 8. Presampling MTFs of the HQ system. The sampling fre-
quency feamp is marked on the plot.

Low quality
Image

Simulated
Low Quality Image

- ".-'a 1 a .
- . s & =
-

g
.
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rently using the HQ system and the LQ system, [, ?u% and
19 respectively. In addition, we received parameters that
were grabbed with the HQ images such as t;,, Thoqy, and
DRC parameters (g and o).

In order to implement our simulation, we need to input

the imaging parameters of the HQ system and the LQ

1
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0

I
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I
I
]
I
]
I
]
I
1
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]
=5 0

5 10 15
£ [cy/mrad]
Fig. 9. Spectrum associated with the entire HQ imaging sys-
tem, before sampling. As a result of sampling it is replicated.
There is very little energy in the overlap between the replicates:
a very small portion of the spectrum is aliased.

High quality
Image

Simulated
Low Quality Image

Fig. 10. Experimental results. Each column includes a set from a distinct experiment. There is a significant difference between I'? and
X9, Nevertheless, jf;ﬁ appears very similar to I-9. Targets are labeled for a lock-on grade comparison. Pay attention to the trees in the

ellipse. In I''? they all have the same gray level, but in I-Q they have different gray levels in different zones, an effect caused by the

out out

median subtraction. In if;ﬁ we see the same effect.
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Fig. 11. Additional experimental results. Each column includes a set from a distinct experiment. In all sets, there is a significant ap-

pearance difference between I''? and I'Q. Nevertheless, fL(’{ appears very similar to IX9. Targets are labeled for a lock-on grade

7 out out* ou
comparison.

system. The basic parameters (fop:, Agpt, Ag, etc.) were
given to us by the manufacturer, as well as the PSFs,
which were measured by the manufacturer. Figure 7 plots
the horizontal PSFs of the systems. It also indicates the
horizontal pitch of the detector (30 um). The optical PSF
hopt Was estimated based on laboratory measurement of
images of a narrow slit target in various directions. The
measurement was performed by a small scanning detec-
tor. The cross-talk PSF A, was measured in the follow-
ing way: The detector was irradiated in a subpixel area
(using a laser beam and a mask). The irradiated area was
moved across the detector, and A,y was calculated from
the readout. Figure 8 plots the presampling modulation
transfer functions (MTFs) of the HQ system. The sam-
pling frequency, fiamp, is marked on the plot. Figure 9
plots the spectrum associated with the entire HQ imaging
system, before sampling. As a result of sampling, it is rep-
licated. There is very little energy in the overlap between
the replicates: a very small portion of the spectrum is
aliased. Hence, aliasing is minor in this case.

To measure the noise STD, v, images were taken of
a uniform target in the temperature of the scene. The
temporal noise was then the temporal STD per pixel. Spa-

out*

tial noise was estimated as the spatial STD of the image
of the target, calculated after temporal frame averaging
had eliminated the temporal noise. For a scene at room

temperature the temporal noise STD, 15+ Yoy eees WAS
equivalent to =~1500e for the LQ system and =~1350e for
the HQ system. The spatial noise STD, vgyy, Was equiva-
lent to =800e for the HQ system. For the LQ system, vgny
could be neglected because of the median subtraction.
Using the parameters given to us, we implemented the
cross-sensor transformation on the HQ images I\, as ex-

plained in Section 3, using MATLAB to simulate the L.Q im-

ages i{:g’% In the following we compare the Igf’tz images
with the grabbed LQ images I-9

out*

B. Visual Comparison
We first present a visual comparison. The images 1

out’
X9 and ff;lﬁ are shown in Fig. 10. There is a significant

difference between I'1? and -9, due to the difference be-

tween the systems. Nevertheless, jﬁﬁ appears very simi-

lar to I-9. In particular, note the area surrounded by an

ellipse. In I''9, one can see a building among trees, and all

the trees have the same gray level. On the other hand, in
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Ig‘f% the trees are smeared, and they have different gray
levels in different zones. The latter effect is caused by the

median subtraction, which affects each row differently.
The image 19 has the same effects. Additional sets are

out
shown in Fig. 11, with similar behavior.

C. Quantitative Measure

We would like to compare the results quantitatively. To do
this, we need a quantitative measure. We opted for a mea-
sure that is based on a computer-vision assignment,
which is what the LQ system we use is designed for. Con-
sider the task of lock-on by a tracker. Here, lock-on per-
formance yields a quantitative measure for the computer
vision task of this system. We need to demonstrate a per-

formance similarity between I'Q and joLﬁ This emulates
the scenario of operation: Before activating the disposable
system, there is a need to estimate the lock-on perfor-
mance based on a live sample of the scene.

The lock-on quality is a function of variance and noise
in a specified area around a target. Therefore, to calculate
the lock-on grade for a target, a 15X 15 pixel window
(Iin) is set around the target. In this window the lock-on
improves as the target contrast increases relative to the
image noise. Thus, let the lock-on grade be

Grock = STD i)/ Vrpise (33)
where v, ;e is the noise STD. For I 1;3, the noise STD vy ;e
is estimated as described in Subsection 3.A.3. We have
calculated Gy for different targets, which are labeled in
Figs. 10 and 11. The lock-on grades on these targets are
summarized in Table 1, estimated by nearby pixels
around the target. Indeed, Gy, is significantly higher in
IM9 than in IX9. On the other hand, Goex in each target in

out out®

I LQ is about the same as in IX9. We thus conclude that in

Table 1. Lock-on Grade in Different Targets in
19, 11, and j1Q

out? *out?

Glock
Target e 9 e
1 19.4 4.5 4.3
2 14.1 4.1 4.2
3 28.7 6.1 5.9
4 11.1 2.0 2.1
5 11.9 3.2 3.1
6 17.2 4.0 3.8
7 21.9 5.8 5.6
8 21.9 3.7 3.9
9 9.6 4.2 4.0
10 18.0 9.6 9.8
11 30.0 10.9 10.7
12 15.8 3.9 4.1

“The grades in /)¢ are an order of magnitude higher than those in 752, Neverthe-

less, the grades in /5 are similar to those in 752,
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Fig. 12. Cold shield efficiency. The lighter cone shows the solid
angle set by the optics (), while the darker cone shows the solid
angle set by the cold shield aperture Qcg,. When Qcgy>Qp,
some unwanted internal radiation reaches the detector.

these examples, simulating foLﬁ based on real HQ image

data leads to a good forecast of the performance of the LQ
system in this computer-vision task.

5. DISCUSSION

We believe that our model is robust, since it is based on
the physical parameters of the systems. It has two advan-
tages over the mentioned example-based methods. First,
it can deal with arbitrary transformations once the imag-
ing process is known. Moreover, it is simple, fast, and no-
niterative, in contrast to current example-based methods.
The latter deal with limited transformations, are itera-
tive, and consume memory and processing resources.

We believe that this approach can be further extended
to video sequences. There, temporal effects should be con-
sidered. For example, the noise model should handle spa-
tial noise and temporal noise explicitly. In addition, tem-
poral blur operators should be modeled. Furthermore, it
would be interesting to apply these principles to other im-
age modalities such as visible-light and medical environ-
ments.

APPENDIX A: AMBIENT RADIANCE
CONTRIBUTIONS

In addition to the scene in view, a system may sense un-
related radiance components. These components come
from the camera body and from the optics. Figure 3 de-
picts the different radiance contributions to the photon ir-
radiance on the detector. In thermal imaging the non-
scene contributions are significant. In the following, we
explain the processes that each of these contributions un-
dergoes. Since the radiation passes through a cold filter,
all contributions are multiplied by the transmittance of
this cold filter, ().

The first component is direct internal radiance. The
camera body is hot; thus it radiates. Most of this radiation
is blocked by a cold shield. However, as depicted in Fig.
12, part of this radiation may directly reach the detector.
This occurs when the solid angle set by the cold shield ap-
erture (Qqgp) is larger than the solid angle set by the op-
tics (Qop). This imperfection is expressed by the cold
shield efficiency, 7ogh=Q0pt/ Qcsh. If the emissivity of the
camera body is €,(N), then the contribution of the direct
radiation to the photon irradiance at the detector is
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EYY= Qopt( 1/ mesn— DL\(Ty) &M 76 (N).

The second component is reflected internal radiance,
which is part of camera body radiance, reflected by the op-
tics toward the detector. It is given by

Eiﬂ=Lx(Tb)Eb(A)TF(K)ff Popt(\, 6, ) dbd . (34)
Q

opt

Here popi(N, 6, ¢) is the reflectance of the optics toward the
detector, where 6 and ¢ are the angles of incidence at the
optical aperture.

The third component is optics self-radiance: The optical
components radiate. This radiance depends on the tem-
perature of the optical components, which usually equals
the camera body temperature. It also depends on the
emissivity of the optics, €,;(\). The photons are gathered
through Qopts thus contributing EPt
=Qopeln (T) €5pt(N) Tr(N) to the photon irradiance at the de-
tector. Note that T}, may change during operation. In par-
ticular, it may increase by aerodynamic heating in high-
speed missiles. Hence, image prediction may need to
account for that. In our example, the lock-on task is per-
formed when the missile is still stationary, and this is the
task that should be predicted.
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