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Abstract
Defect detection plays a critical role in thin film transistor liquid crystal display (TFT-LCD)
manufacturing. This paper proposes an inline defect-detection (IDD) system, by which the
defects can be automatically detected in a TFT array process. The IDD system is composed of
three stages: the image preprocessing, the appearance-based classification and the
decision-making stages. In the first stage, the pixels can be segmented from an input image
based on the designed pixel segmentation method. The pixels are then sent into the
appearance-based classification stage for defect and non-defect classification. Two novel
methods are embedded in this stage: the locally linear embedding (LLE) and the support
vector data description (SVDD). LLE is able to substantially reduce the dimensions of the
input pixels by manifold learning and SVDD is able to effectively discriminate the normal
pixels from the defective ones with a hypersphere by one-class classification. After
aggregating the classification results, the third stage outputs the final detection result.
Experimental results, carried out on real images provided by a LCD manufacturer, show that
the IDD system can not only achieve a high defect-detection rate of over 98%, but also
accomplish the task of inline defect detection within 4 s for one input image.

Keywords: thin film transistor liquid crystal display, defect detection, one-class classification,
support vector data description, manifold learning, locally linear embedding

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thin film transistor liquid crystal displays (TFT-LCDs) have
become more and more popular in recent years. In today’s
competitive market, LCD manufacturers must provide panels
of highest possible quality for returning a favorable market

position. To achieve this, one of the most effective and efficient
ways is to inspect defects on the panels directly.

TFT-LCD manufacturing consists of three fabrication
processes, including TFT array, cell and module assembly
processes. Over the past few years, several approaches to
LCD defect detection have been proposed, and most of them
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Figure 1. A normal GE image.

focused on the MURA defect which is executed in either a
cell process or a module assembly process, for example, the
works of [1–9]. Several works have also been proposed for
defect detection on glass substrates [10, 11]. As for the defect
detection for a TFT array process, Lu et al [12] proposed
a singular value decomposition-based scheme by which four
kinds of surface defects of panels can be detected. However,
their scheme is performed after the entire TFT array process
is over.

The above works deal with the problems of defect
inspection in a cell/assembly process, or after the TFT array
process is complete. However, inspecting the defects ‘in’ the
TFT array process is also very important. The TFT array
process consists of five successive engineering processes,
including (1) gate-electrode, (2) semiconductor-electrode,
(3) source-and-drain, (4) contact-hole and (5) pixel-electrode
engineering. In each engineering, a panel will go through the
same seven processes: cleaning, thin-film deposition, photo-

Figure 2. Examples of defective images in GE engineering.

resist coating, exposure, developing, etching and stripping.
Due to different physical factors, various kinds of defects
would occur during the TFT array process, and such defects
are called inline defects. They would damage the panels, thus
lowering the yield rate. Fortunately, most of the defective
panels can still be fixed by rework if the inline defects are
detected before the etching process. Therefore, detecting the
inline defects on panels accurately before the entire TFT array
process is complete becomes the first problem to be solved.
This paper proposes an inline defect-detection (IDD) system
which can quickly and accurately tell whether a captured image
contains an inline defect.

Based on the idea that the earlier the inline defects are
detected, the higher the probability that the defective panels
can be fixed, this paper aims at dealing with the problem
of defect detection for gate-electrode (GE) engineering. A
normal GE image, as shown in figure 1, contains gate lines,
capacity storages and pixel regions. The pixel regions are the
rectangular regions enclosed by the gate lines and the capacity
storages. For the sake of simplicity, the ‘pixel regions’ are
called ‘pixels’ hereafter.

In GE engineering, the inline defects such as connection
between gate line and capacity storage (CGC), abnormal
photo resist coating (APC), scratch (SCR) and particle (PAR)
can generally be observed from the surfaces of the panels.
Examples of defective images are shown in figure 2. The
images used in this paper are 768 × 576 colored images
with resolutions of around 1.15–1.20 pixels µm−1 (the ‘pixel’
mentioned here means the spatial unit of a digital image, not
the pixel region in the GE image). All the images are captured
between developing and etching processes by high-resolution
cameras.

From figure 2, we can observe that the defect in a defective
image would appear in some pixels only, called the defective
pixels, while other pixels in the same image are normal.
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Figure 3. Defective pixels and normal pixels.

Figure 4. The proposed idea for inline defect detection.

Figure 3 shows some defective and normal pixels. The main
difference between a normal pixel and a defective image is
that their appearances are apparently different: the surface
of a defective pixel contains a specific kind of texture, while
the color of a normal pixel is nearly uniform, implying that
the variation of the gray-level distribution of a normal pixel
is small. Therefore, the appearance of a pixel can be a
discriminating feature.

Based on the above observation, we have a straightforward
idea, as illustrated in figure 4, that the goal of inline defect
detection can be achieved by appearance-based classification.
Assuming that an input GE image contains m pixels, the
m pixels are sent into the system for appearance-based
classification, one at a time. That is, the task of appearance-
based classification will be performed m times for the input
GE image. For appearance-based classification, the gray-level
image of a pixel will be sent into the classifier directly. If the
gray-level pixel is a p×q matrix, the input of the classifier will
be a p ×q-dimensional vector in which each element is a gray
value within the range of [0, 255]. The classification output
for the ith pixel is denoted by Oi , where Oi will be either 0 or
+1. If the ith pixel is classified as the non-defect class, then
Oi = 0; otherwise (classified as the defect class) Oi = +1.
The final decision can be made by the rule: if

∑m
i=1 Oi > 0,

the input GE image is defective; otherwise
(∑m

i=1 Oi = 0
)

it
is a normal GE image.

Though the idea is simple, two critical problems may
follow. Firstly, the large-input-dimensionality (LID) problem
would occur if the appearance-based classification were
adopted [17, 18, 36]. Secondly, though the classification
task mentioned above can simply be realized by two-class
classification, a large number of missing defects may be
produced, which refers to the large-positive-margin (LPM)
problem. The two critical problems will be detailed in
section 2.

In order to solve the LID problem, a powerful nonlinear
dimensionality reduction technique called locally linear
embedding (LLE) [32, 33] is introduced into our system. LLE

is able to map the high-dimensional input data into a single
low-dimensional embedding coordinate system by manifold
learning. By LLE, the input dimensionality of the classifier can
be reduced substantially, therefore reducing the complexity of
the classifier.

In the classification stage, we need to select an appropriate
classifier as the defect detector in order to return a high defect-
detection rate. Instead of using two-class classifiers such
as the support vector machine (SVM) [13, 14], this paper
proposes the use of a one-class classification to solve the LPM
problem. A novel one-class classifier called support vector
data description (SVDD) [23, 44] is adopted as the defect
detector. By using SVDD, the LPM problem can be solved,
thus being able to reduce the number of missing defects.

By using LLE and SVDD, the appearance-based
classification stage can be constructed. However, we need
to first obtain the pixels from an input GE image before this
stage. Therefore, we also construct an image preprocessing
stage. Finally, we develop the IDD system by combining
the following three: image preprocessing, appearance-based
classification and decision making. The overview of the IDD
system will be given in section 3. By the IDD system, the inline
defects can be detected from the given GE images effectively
and efficiently.

The remainder of this paper is organized as follows. In
section 2, the LPM and LID problems will be elaborated,
as well as their corresponding solutions. The overview
of the IDD system is given in section 3. Section 4
details the appearance-based classification including LLE-
based dimensionality reduction and SVDD-based defect and
non-defect classification. Experimental results are presented
in section 5. Conclusions are drawn in section 6.

2. Problem statements and solutions

In this section, we will detail the reasons why we adopted LLE
and SVDD as the basis of the appearance-based classification
stage in the proposed IDD system.
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2.1. Solving the large-input-dimensionality (LID) problem
with LLE

As aforementioned, the appearance-based classification
approach is adopted in this paper, that is, the gray-level
pixel image will be fed into the classifier directly. The input
dimensionality, however, would be very large. For example,
the input dimension equals 900 if a gray-level pixel is a 30×30
matrix. Often, appearance-based classification systems would
suffer from the large-input-dimensionality (LID) problem.
The most typical examples are face detection [16] and face
recognition [17, 18, 36]. Therefore, it is necessary to perform
the task of dimensionality reduction on the input pixels before
they are sent into the classifier.

Projection-based methods are widely used for
dimensionality reduction. The most popular one would
be principal component analysis (PCA) [27]. PCA computes
a linear transformation by diagonalizing the covariance matrix
of data. However, its performance is generally limited due
to its linear nature [28]. Its nonlinear version, kernel PCA
(KPCA), has been proposed to overcome this shortcoming
[29]. Unfortunately, KPCA is computationally expensive
[30]: the kernel matrix needs to be stored after the training,
and as a test datum arrives, a large number of dot-product
calculations is needed to obtain the projection of the test
datum. The self-organizing map (SOM) is an unsupervised
neural-network approach to dimensionality reduction [31].
Though SOM possesses the property of a neighborhood-
preserving map, it tends to involve more free parameters such
as learning rate, neighborhood size and network structure,
implying more computational complexities and the problem
of local optimum.

Besides the projection-based and neural network
approaches, there is also an approach to dimensionality
reduction, called manifold learning. Manifold learning aims
at discovering low-dimensional manifolds embedded in high-
dimensional input space. Some promising manifold-learning
methods include locally linear embedding (LLE) [32, 33],
isomap [34] and Laplacian eigenmap [35].

LLE provides nonlinearly dimensionality reduction in an
unsupervised manner and maps the high-dimensional inputs
into a single global coordinate system of lower dimensionality,
called embedding. During the LLE mapping, not only can the
global data structure be recovered by locally linear fits, but also
the intrinsic geometry of local neighborhoods can be preserved
by a neighborhood-preserving map. Also, its optimizations do
not involve local minima. LLE has been a promising tool for
nonlinear dimensionality reduction and has successfully been
applied in tasks that require reducing the input dimensionality
[36–39]. Therefore, for solving the LID problem in this study,
LLE is introduced into our system.

2.2. Solving the large-positive-margin (LPM) problem
with SVDD

The defect-detection problem may be treated as a two-class
(non-defect and defect) classification problem. Assuming
that the two-class classification strategy is adopted, we need
to define the two classes: all normal pixels belong to the

Figure 5. An example illustrating the LPM problem caused by the
two-class classifier SVM.

non-defect class (defined as positive class), and all defective
pixels belong to the defect class (defined as negative class).
Then, we need to choose a good two-class classifier. SVM can
be a candidate due to its great generalization ability [13, 14].

Based on the principle of structural risk minimization
(SRM), SVM can learn an optimal separating hyperplane
(OSH) that not only minimizes the empirical error, but also
maximizes the margin of separation simultaneously during the
training, thus gaining better generalization performance than
other traditional learning machines learning by empirical risk
minimization (ERM) principle, such as the multilayer neural
networks trained by the error back-propagation algorithm
[14, 19]. The success of SVM has recently been shown in face
detection [15, 16], face recognition [17, 18] and biomedical
signal classification [19]. However, this great advantage,
capable of maximizing the separation margin, would become
a drawback for our study instead. We give an account of this
point in the following.

For training an SVM, two sets must be prepared in
advance: the positive (non-defect) training set and the negative
(defect) training set. Figure 5 is an illustrative example, where
the positive and the negative training sets are distributed in the
red region and the green regions, respectively, and the OSH
resulted from SVM is plotted with the white curve.

In a real TFT array process, the patterns of the defective
pixels are generally quite different, and some kinds of inline
defects do not appear frequently in practical manufacturing,
for example the CGC defect. That is, the number of available
defective images is actually limited. Therefore, it is difficult
to represent the ‘true’ negative-class distribution by means of
limited negative training data. That is, the available negative
training set is generally not very representative. In other words,
the variation of the true distribution of the negative class would
be larger than that of the distribution of the negative training
set. Therefore, as we can see from figure 5, the true distribution
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Figure 6. Block diagram of the proposed inline defect-detection system.

of the negative class is the region enclosed by the two blue
dashed curves, and the green regions do not stand for the
regions enclosed by the blue curves. Consequently, some of
the newly coming defective pixels, plotted with black dots,
may fall on the wrong side of OSH, since the margin on the
side of the positive class is very large, resulting in considerable
false positives (missing defects). A false positive means that
a negative datum is classified as a positive datum. A defect-
detection system is unreliable if there are too many missing
defects. The problem stated above refers to the LPM problem.
In summary, when the negative training set does not represent
the true negative-class distribution, the LPM problem stated
above would occur if the two-class classification approach
were adopted.

In contrast with defective pixels, the normal pixels have
much more uniform appearance though there would still exist
a small variation in the positive-class distribution due to the
lighting condition. Fortunately, collecting the normal pixels is
easier because most of the panels are normal. Therefore, it is
reasonable to make the assumption that the available positive
training set can approximate the true distribution of the positive
class.

Based on the reasonable assumption, the solution to the
LPM problem can easily be obtained: if we can find a tight
and closed boundary to enclose the positive class, e.g., the
pink curve depicted in figure 5, then this boundary can be
used as a discriminating function to distinguish defective
pixels from normal pixels. Also, only the positive data are
needed for training such a boundary. Such an idea meets
the central concept of novelty detection, also called one-class
classification [20–23, 30, 44, 45].

In the past few years, one-class classification has attracted
increasingly attention in the fields of pattern recognition
and machine learning because some practical two-class
classification applications suffer from the problem that one
of the two classes is under-sampled. Several promising one-
class classifiers have recently been proposed, and one of them
is the support vector data description (SVDD) [23, 44].

SVDD is capable of finding a hypersphere to tightly
enclose all or most of the positive data (usually referred to as

the target data) by solving a constrained optimization problem.
After the optimal hypersphere is obtained, its boundary can be
used as the discriminating function. If a test datum falls inside
or on the boundary, it is accepted as a target datum; otherwise,
it is rejected as a negative datum (usually being referred to as
an outlier). SVDD has gained wide acceptance in one-class-
classification-related applications, such as anomaly detection
in hyperspectral imagery [24], bearing fault detection [25] and
T-cell epitopes prediction [26].

Target data may not be spherically distributed in the input
space. By means of the kernel trick, SVDD can still find
a flexible boundary to enclose the target data even if the
target class is not spherically distributed in the input space.
The success of SVDD should be attributed to the use of the
kernel trick which had also been successfully introduced to
SVM before SVDD was proposed. Therefore, using SVDD
as the classifier in the appearance-based classification stage
can deal with the LPM problem, and result in a satisfactory
classification performance.

3. Overview of the inline defect-detection system

Figure 6 shows the block diagram of the proposed inline defect
detection (IDD) system consisting of three stages: image
preprocessing stage, appearance-based classification stage and
decision-making stage. In the following, we show how the
IDD system processes an image by taking a real defective
image as its input.

3.1. Image preprocessing stage

The image preprocessing consists of three components: pixel
segmentation, pixel resizing and row-by-row scanning.

3.1.1. Pixel segmentation. For pixel segmentation, a
projection-based segmentation method containing six steps is
designed. Based on the fact that the gate lines and capacity
storages are distributed perpendicularly and periodically,
projection can be a good approach to segmentation. The six
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Figure 7. An example of projection-based pixel segmentation: (a) original defective image; (b) gray-level defective image; (c) binarized
defective image; (d) dilated defective image; (e) horizontal projection histogram; ( f ) corner points (red dots) of the pixels; (g) modified
corner points (blue dots); (h) segmented pixels (blue rectangles).

steps are introduced as follows, and the corresponding results
are shown in figure 7.

• Step 1 (image transformation). First, a colored defective
image (figure 7(a)) is transformed into a gray-level one
G[i, j ], as shown in figure 7(b). Then, G[i, j ] is binarized
to B[i, j ] by the Otsu thresholding technique [40], as
shown in figure 7(c).

• Step 2 (dilation). The morphological operation dilation
with a squared structuring element (width = 5) is
performed on B[i, j ]. The dilated image D[i, j ] is shown
in figure 7(d).

• Step 3 (projection). By projecting D[i, j ] on the
x- (horizontal) and y- (vertical) axes, two projection
histograms are obtained. Here we use the horizontal
projection histogram as the illustration (figure 7(e)).

• Step 4 (raster scanning). An x-directional raster TX is used
to scan the horizontal projection histogram. The height
of TX is 0.75 times the maximum height of the horizontal
projection histogram. The x-directional coordinates of
the crossing points (interactions of TX and the histogram)
are recorded. The same procedure is also applied
to the vertical projection histogram. The coordinates
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Figure 8. Resizing a defective pixel to a 30 × 30 normalized pixel.

of the crossing points along the y-axis can also be
obtained.

• Step 5 (corner point marking). Each pixel has four corners.
Based on the x- and y-coordinates of the crossing points,
the corner points (marked with red dots) of each pixel can
be obtained, as shown in figure 7( f ). By linking the four
corner points with straight lines for each pixel, the pixels
in the defective image can therefore be found. However,
the obtained pixels may cover a bit of gate lines. Some
modifications are needed.

• Step 6 (corner point modification and segmentation).
Therefore, the corner points of each pixel are moved
inward, until the area of each new pixel surrounded by
the moved corner points is 9/16 times the one surrounded
by red dots. The result is shown in figure 7(g). By linking
the newly obtained four corner points with four straight
lines, each pixel in the defective image is found and can
be segmented, as shown in figure 7(h).

From this example, we can observe that there are 25 pixels
segmented from the defective image. Then, all the 25 colored
pixels are transformed into gray-level ones denoted by Pi ,
i = 1, . . . , m where m = 25.

3.1.2. Pixel resizing. In this step, the gray-level pixels are
resized to p×q normalized pixels. In this study, p = q = 30.
An example is shown in figure 8. The normalized gray-level
pixels are denoted by P̄i , i = 1, . . . , 25.

3.1.3. Row-by-row scanning. After row-by-row scanning,
each normalized gray-level pixel P̄i can be represented by a
vector xi ∈ RD where D = 900. The vector xi is called
the raw data. If xi represents a defective/normal pixel, it is
called defect/non-defect raw data. In this example, 25 raw
data are obtained. They will be sent to the appearance-based
classification for further defect and non-defect classification.

3.2. Appearance-based classification stage

This stage is composed of two components: LLE and SVDD.

3.2.1. Dimensionality reduction via LLE. After the raw data
are received, LLE would start to perform the task of nonlinear
dimensionality reduction on these data, one at a time. By LLE,
the input raw data are mapped into a d-dimensional embedding
space Rd where d � D. The mapped data yi ∈ Rd are
called embedding datum. Then, if xi is a defect/non-defect
raw datum, its corresponding yi is called a defect/non-defect

embedding datum. Then, in this example, the embedding data
yi, i = 1, . . . , 25, are fed into SVDD.

3.2.2. Defect and non-defect classification via SVDD. For
each embedding datum yi , SVDD will generate a classification
output Oi . In other words, there will be m outputs generated
by SVDD. If yi is classified as the non-defect class by SVDD,
then O = 0, which means that the ith pixel Pi is classified as a
normal pixel; if yi is classified as the defect class, then Oi = 1,

meaning Pi is a defective pixel. The m SVDD outputs will be
sent into the decision-making stage for a final check.

3.3. Decision-making stage

Finally, the detection result can be determined by the simple
rule: if

∑m
i=1 Oi = 0, the input GE image is normal;

otherwise, it is defective. Then, the inline defect detection
is complete.

4. Appearance-based classification

4.1. Dimensionality reduction via LLE

4.1.1. Training. Assuming that we have a training set
S = {xi}i=1,...,n, in which each raw datum is D-dimensional,
xi ∈ RD , the training of LLE [32, 33] can be divided into two
steps as follows.

• Step 1 (find the optimal reconstruction). In the space RD ,
we expect each datum point and its neighbors to lie on or
be close to the linear patch of a manifold. Hence, every
datum point xi can be considered as a linear combination
of its k nearest neighbors. Let wij denote the jth weight
of the linear combination for point xi . The weights wij

summarize the contribution to the reconstruction of the
ith datum point. In addition, let W be the n × n weight
matrix whose ith row corresponds to the weight vector
wi = [wi1, wi2, . . . , wij , . . . , win] for the ith datum point
xi , and KNNi be the set containing the k nearest neighbors
of xi . To find the best reconstruction, we need to minimize
the reconstruction errors, measured by the cost function:

�(W) =
n∑

i=1

∥∥∥∥∥∥xi −
n∑

j=1

wijxj

∥∥∥∥∥∥
2

(1)

subject to

n∑
j=1

wij = 1, ∀i (2)
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wij = 0, ∀xj /∈ KNNi (3)

Since xi is reconstructed only from its k nearest neighbors,
the weight matrix W would be very sparse. Further, let
NN(1), NN(2), . . . , NN(k) denote the indices of the k
nearest neighbors for a fixed datum point; then each term
in � can be re-expressed as∥∥∥∥∥∥xi −

n∑
j=1

wijxj

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥xi −

k∑
j=1

wiNN(j)xNN(j)

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

k∑
j=1

wiNN(j)(xi − xNN(j))

∥∥∥∥∥∥
2

= V T
i CiVi (4)

where Vi = [wiNN(1), . . . , wiNN(k)]T and Ci =[
ci
jj ′

]
j,j ′=1,...,k

is the local covariance matrix of k × k for
point xi :

ci
jj ′ = (xi − xNN(j))

T (x − xNN(j ′)). (5)

Now the primal constrained least-squared problem can
easily be solved; to get Vi , we just need to solve the
linear system of equations, CiVi = 1k×1, and to rescale
the weights so that

∑k
j=1 wiNN(j) = 1. Then, the

reconstruction weights for xi can be obtained. However,
the matrix Ci may be singular if k < D. It can be solved by
adding a sufficiently small value to the diagonal elements
(see the appendix of [32]):

Ci ← Ci + µI (6)

where µ is small compared to the trace of Ci , and I

is the k × k identity matrix. The result would not be
influenced if the value of µ were small enough. We set
µ = 1e−4 × tr(Ci) where tr(Ci) means the trace of Ci .

• Step 2 (find the optimal embedding). The main idea
behind LLE is to embed the input data xi , which are
in a high-dimensional input space RD , into a lower
dimensional embedding space Rd . The embedding data
yi ∈ Rd represent global internal coordinates on the
manifold embedded in RD . The embedding data in
Rd should be reconstructed using the same weights of
the linear combination determined in RD . Therefore,
using the same weights wij obtained in step 1, this step
optimizes the coordinates of yi , which is equivalent to
minimizing the embedding cost:

�(Y) =
n∑

i=1

∥∥∥∥∥∥yi −
n∑

j=1

wijyj

∥∥∥∥∥∥
2

(7)

where the unknown matrix Y contains the output
embedding data yi as its columns. In order to make
the resulting embedding data invariant to translation, the
constraint

∑n
i=1 yi = 0 should be added. Also, the

resulting yi should also be forced to have unit variance
in all directions in order to avoid degenerate solutions:
(1/n)

∑n
i=1 yiy

T
i = I , where I is the d×d identity matrix.

Therefore, the optimization also becomes a constrained
least-squares problem.

To solve this, Roweis et al have suggested a more efficient
way by introducing the matrix M:

M = (I − W)T (I − W) (8)

where M is the n × n sparse matrix. Then, the optimal
embedding can be found by computing the bottom d + 1
eigenvectors of the matrix M. The bottom eigenvector
associated with the smallest eigenvalue should be discarded
since it represents a free translation mode. The remaining d
eigenvectors form the embedding Y.

4.1.2. Testing via the linear generalization (LG) method.
LLE lacks an explicit transformation for test raw data
xn+1 since LLE operates in a batch mode. Two methods
have been proposed to deal with this problem: one is the
linear generalization (LG) method [33] and the other is the
incremental LLE [41]. The LG method is adopted in this
paper. The corresponding embedding data yn+1 for a test raw
data can easily be found by LG, which is summarized to two
steps as follows.

• Step 1. To find yn+1, we need to first find the k′

nearest neighbors of xn+1 among the training set S, and
then compute the weights wn+1 that best reconstruct xn+1

from its k′ neighbors with the sum-to-one constraint, as
expressed by equation (2). Note that here the number of
nearest neighbors k′ can be smaller than that used in the
training phase, i.e., k′ � k.

• Step 2. Finally, the output in the embedding space can
easily be found by a linear combination:

yn+1 =
∑

j
w(n+1)j yj (9)

where the sum is over the yi that correspond to the k′

nearest neighbors of xn+1.

4.2. Defect and non-defect classification via SVDD

4.2.1. Training. For SVDD, only the target data are needed
for its training. In this study, the non-defect class is defined as
the target class. Supposing that the training set is T = {yi}Li=1,
where yi ∈ Rd are non-defect training embedding data, and L
is the size of the training set, SVDD aims to find a minimum-
enclosing hypersphere such that all or most of the non-defect
data are accepted, which is formulated as the constrained
optimization problem [23]:

minimize R2 + C

L∑
i=1

ξi

subject to ‖yi − a‖2 � R2 + ξi; ξi � 0 ∀i

(10)

where R is the radius of the hypersphere and a is its center; the
slack variables ξi allow for some non-defect data outside the
hypersphere, and the penalty weight C controls the tradeoff
between the volume of the hypersphere and the number of
errors. Equation (10) formulates a linear SVDD since it finds
the hypersphere in the input space Rd .

However, the linear SVDD may not obtain a tight
boundary due to the fact that the training set T may not be
a spherically shaped distribution in the input space. A more
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flexible boundary is required. Motivated by the success of the
kernel trick used in SVM, SVDD has a nonlinear version also:
if there exists a nonlinear mapping � : y ∈ Rd �→ �(y) ∈ F ,
which maps the data yi into a higher dimensional feature space
F (also called the Hilbert space) where the mapped data form
a spherically shaped area. The nonlinear SVDD solves the
following:

minimize R2 + C

L∑
i=1

ξi

subject to ‖�(yi) − a‖2 � R2 + ξi; ξi � 0 ∀i.

(11)

By introducing the non-negative Lagrange multipliers αi

and βi , the Lagrangian is obtained:

Q(R, a, ξi, αi, βi) = R2 + C

L∑
i=1

ξi

−
L∑

i=1

αi(R
2 + ξi − ‖�(yi) − a‖2) −

L∑
i=1

βiξi . (12)

Taking the partial differentials of Q with respect to R, a

and ξi , and setting them to zero yields

∂Q

∂R
= 0 ⇒

L∑
i=1

αi = 1 (13)

∂Q

∂a
= 0 ⇒ a =

L∑
i=1

αi�(yi) (14)

∂Q

∂ξi

= 0 ⇒ αi = C − βi. (15)

Since αi, βi � 0 and αi = C − βi , the lower and upper
bounds for αi can be obtained: 0 � αi � C. Substituting
(13), (14) and (15) into (12) yields the dual problem:

maximize
L∑

i=1

αi(�(yi) · �(yi))

−
L∑

i=1

L∑
j=1

αiαj (�(yi) · �(yj ))

subject to
L∑

i=1

αi = 1; 0 � αi � C ∀i. (16)

By the kernel trick, the dot product of any two data points
in the feature space can be calculated with Mercer’s kernel
[14] defined by K(x, y) = �(x) ·�(y). Finally, the nonlinear
SVDD becomes

maximize
L∑

i=1

αiK(yi, yi) −
L∑

i=1

L∑
j=1

αiαjK(yi, yj )

subject to
L∑

i=1

αi = 1; 0 � αi � C ∀ i.

(17)

The solutions are classified into the three categories: (1)
for αi = 0, the corresponding data points fall inside the
hypersphere; (2) for 0 < αi < C, the data points lie on
the boundary of the hypersphere and (3) for αi = C, the data

points fall outside the hypersphere. The data points yi with
αi > 0 are called support vectors (SVs).

4.2.2. Testing via the modified decision rule. After the
optimal hypersphere is obtained, the output for a test datum y
can easily be obtained by the decision rule:

y ∈
{

non-defect class if D(y) � R

defect class if D(y) > R
(18)

where D(y) is the distance between y and the center of the
hypersphere, which is calculated by

D(y) =
√

‖�(y) − a‖2

=

√√√√√
⎛
⎝�(y) −

∑
yi∈SV s

αi�(yi)

⎞
⎠

T ⎛
⎝�(y) −

∑
yi∈SV s

αi�(yi)

⎞
⎠

=
√

K(y, y) − 2
∑

yi∈SV s

αiK(yi, y) +
∑

yi∈SV s

∑
yj ∈SV s

αiαjK(yi, yj ).

(19)

Only training data points yi with αi > 0 are needed in the
testing phase because (1) from equation (14), we can see that
the center a is a linear combination of the non-defect training
embedding data whose αi > 0, and (2) the radius R can be
obtained by calculating the distance between any training data
points that lie on the boundary and at the center, i.e., the data
points with 0 < αi < C.

Two kernel functions are popular [14]: one is the
polynomial function and the other is the Gaussian function.
Generally, a polynomial kernel would result in a sparse
data distribution in the feature space, which would drop the
performance of SVDD [23, 44]. Therefore, the polynomial
kernel is not a good choice. In contrast, a Gaussian kernel is
more suitable for SVDD because the Gaussian kernel has the
property of translation invariance. It has recently been shown
that the SVDD with a Gaussian performs better than the one
with a polynomial kernel [45]. Therefore, in this paper, the
Gaussian function is chosen as the kernel, expressed by

K(x, y) = �(x) · �(y) = exp

(
−‖x − y‖2

s2

)
(20)

where s is the width of the Gaussian and is a user-defined
kernel parameter.

The decision rule expressed by equation (18) is the regular
decision rule of SVDD. By using this rule, a satisfactory
classification result can be obtained as long as SVDD is well
trained. But, it can be predicted that a few test target data
would still fall outside the boundary due to the fact that the
boundary of the hypersphere is a hard boundary. Yet, it
can also be predicted that most of the target data that fall
outside the hypersphere would be very close to the boundary
because the normal pixels have uniform appearances, implying
a small variation. Therefore, we propose an idea that if the
resulting boundary can further be enlarged a bit, then those
misclassifying target data can be classified correctly. By this
idea, we propose a modified decision rule given by

y ∈
{

non-defect class if D(y) � R + �

defect class if D(y) > R + �
(21)

9



Meas. Sci. Technol. 19 (2008) 095501 Y-H Liu et al

where the extension variable � is a small non-negative real
value, and is user defined.

5. Experimental results

Two experiments will be presented in this section. The first
experiment is to test the performance of the appearance-based
classification stage. In this experiment, the inputs are the
pixels segmented from a set of real GE images. The second
experiment is to test the performance of the proposed IDD
system, for which the inputs are the GE images.

5.1. Performance test of appearance-based classification

For the three stages of the IDD system, only the second
stage, the appearance-based classification stage, needs to be
trained in advance. Therefore, this subsection aims to test the
performance of the appearance-based classification first. A set
of GE images has been prepared for this experiment. This set
contains 270 defective GE images, provided by the TFT-LCD
manufacturer, Chunghwa Picture Tubes Ltd, Taiwan, in 2005.

5.1.1. Data preparation. First, the projection-based pixel
segmentation method is performed in order to obtain the pixels
from the 270 defective images. After segmentation, we obtain
4790 pixels from the 270 images. Among the 4790 pixels, 420
are defective and the remaining 4370 are normal. After pixel
resizing and row-by-row scanning, 420 defect raw data and
4370 non-defect raw data are obtained from the 420 defective
pixels and the 4370 normal pixels, respectively. Each raw
datum is a 900-dimensional vector. The appearances of the
normal pixels are so similar that we do not need to use all the
4370 non-defect raw data to train LLE and SVDD. Therefore,
we randomly choose 420 non-defect raw data from the 4370
ones. Finally, we have two different sets at hand: the non-
defect set SN and the defect set SD , where |SN | = |SD| = 420.

5.1.2. Training and testing for LLE. Two parameters need
to be adjusted in LLE: the number of neighbors k and the
dimension of the embedding space d. Different pairs of (k, d)

would generate different dimensionality-reduction results. A
comparison example is presented in the following.

We randomly choose 20 non-defect raw data from the
non-defect set SN and 50 defect raw data from the defect set
SD , and use them to train LLE with the two different pairs
(k, d) = (10, 2) and (k, d) = (20, 2), respectively. After
training, two sets of 150 2D embedding data are obtained, and
their distributions in the 2D embedding space are shown in
figure 9, where the non-defect and defect embedding data are
plotted with ‘+’ and ‘•’, respectively. From figure 9, we can see
that compared with the result of k = 10, there is a larger class
separability between the defect and non-defect classes when
k = 20. On the other hand, as the value of k is fixed, changing
d would also change the result. However, it is difficult to
visualize the data distribution as the value of d is larger
than 3.

From the above example, it can be seen that to achieve
the best dimensionality-reduction result, we need to find the

(a)

(b)

Figure 9. Distributions of defect and non-defect embedding data in
the LLE-based 2D embedding space under different numbers of
nearest neighbors: (a) k = 10; (b) k = 20.

optimal pair of (k, d). Choosing an appropriate and objective
approach to optimal parameter selection is important. Two
approaches are popular: one is the random sampling method
[16–19, 28] and the other is the cross-validation method
[23, 38, 43, 45]. The cross-validation method is more
suitable for model/parameter selection because its predicted
generalization accuracy is more objective, in particular the
tenfold cross-validation [42]. Also, when searching for the
optimal parameter, the tenfold cross-validation needs to be
performed together with the grid searching technique [43]
which partitions each parameter’s range into several grids.
Accordingly, this approach (tenfold cross-validation plus grid
searching) is adopted in this paper. For LLE, we estimate
the generalized classification accuracy using different pairs
of (k, d): k = [21, 22, . . . , 28] and d = [21, 22, . . . , 29].
Here a nearest neighbor (NN) classifier is used to measure the
classification accuracy. To avoid the data tweak problem, we
conduct the tenfold cross-validation to estimate the generalized
classification accuracy on the sets SN and SD . Therefore,
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Table 1. Comparisons of the NN-classifier-based classification
accuracy and the testing time between with and without the LLE
dimensionality reduction.

Without LLE With LLE

Error rate (%) 12.57 9.44
Average testing time (s/datum) 0.0610 0.0525

we need to try 8 × 9 = 72 combinations, and a tenfold
cross-validation will be conducted on each combination. The
optimal parameter pair will result in the best cross-validation
rate. Finally, the optimal pair of (k, d) is found to be (25, 24),
which means that the optimal dimension of the embedding
space is 24. That is, the dimensions of all input raw data are
reduced substantially, from 900 to 16.

Here we make a comparison between with and without the
LLE dimensionality reduction. The condition ‘without LLE’
means that the 900-dimensional test raw data are directly sent
into the NN classifier without LLE mapping. The condition
‘with LLE’ means that the 900-dimensional test raw data are
first mapped into the 16-dimensional embedding space via the
LG method, and then these embedding data are sent into the
NN classifier for testing the error rate. The results are listed
in table 1.

From table 1 we can see that the error rate on the test
embedding data (9.44%) is lower than that on the test raw
data (12.57%). The testing time for the condition ‘with
LLE’ is composed of two parts: the part of LG and the part
of NN-classifier-based classification. We find that most of
the testing time for this condition is spent on the LG part
where the number of neighbors k′ is set as 10. For test raw
datum, LG takes around 0.0412 s to find its corresponding
embedding data, which occupies 77% (0.0412/0.0525 ×
100%) of the total testing time. The testing time is measured
with a MATLAB program. Actually, the real classification
time for an embedding datum is less than 0.012 (0.0525–
0.0412) s, which is around 1/5 of the classification time of
a raw datum (0.0610 s). The above results show that (1)
the classification accuracy can be enhanced by using LLE,
and (2) the classification time can be reduced after the LLE
dimensionality reduction. The validity of the use of LLE for
solving the LID problem has been verified.

5.1.3. Comparison between LLE and other methods. In the
following, we compare the optimal LLE with two other popular
dimensionality-reduction methods; one is the eigen-subspace
approach, PCA [16, 27], and the other is the unsupervised
neural network, Kohonen’s SOM [31]. Note that for a fair
comparison, the classification error rates for both PCA and
SOM are measured by the nearest neighbor classifier, like the
one used in LLE testing.

For PCA, there is only one free parameter, the number of
the eigenvectors of data covariance matrix. Since each pixel is
represented by a 900-dimensional raw datum, we search for the
optimal number of eigenvectors within the range of [1, 891]
with the interval of 10 (the searching range is partitioned into
90 grids). The optimal number of eigenvectors means the one
resulting in the lowest tenfold cross-validation classification

error rate. The optimal number is found to be 111, for which
the corresponding error rate is 10.23%.

SOM is able to find a winner on the 2D net to represent
the original data which are in high dimension. The learning
process of SOM is composed of three steps [46]: (1)
initializing the weights of all output neurons; (2) for an input
datum, searching for its winner on the 2D net by minimum-
distance-based similarity matching; and (3) updating the
weights of all neurons. Steps 2 and 3 need to be performed
repeatedly until no changes in the weights are observed. In
the experiment, the number of input nodes of SOM is 900
because the input raw data are 900-dimensional. The output
topological net is arranged as a 40-by-40 2D net. Therefore
there are 1600 output neurons in total. During the learning, two
SOM parameters need to be determined: one is the learning
rate and the other is the topological neighborhood function.
The setting of the two SOM parameters here mainly follow
the suggestions in [46, 47].

(1) For the learning rate, a time-varying form η(t) is adopted
here:

η(t) = η0 exp

(
− t

τ1

)
, t = 0, 1, 2, . . . , (22)

where t denotes the learning cycle, τ1 is the time constant
and is set as 200 and the initial learning factor η0 is set
as 0.9. The learning rate η(t) decreases at an exponential
rate. The minimum η(t) is set as 0.01.

(2) The topological neighborhood function is also assumed
to take a time-varying form as

hj,yc
(t) = exp

(
− d2

j,yc

2σ 2(t)

)
(23)

where hj,yc
(t) is the neighborhood function centered

around the winner yc, dj,yc
is the lateral distance between

the winner yc and the excited neuron j in the 2D output
space and σ(t) is defined as

σ(t) = σ0 exp

(
− t

τ2

)
(24)

where τ2 is another time constant and σ0 is the value of
σ at the initiation. As the time t increases, the width
σ(t) decreases at an exponential rate, and the topological
neighborhood shrinks in a corresponding manner. The
initial neighborhood size should be equal to the number
of output neurons, such that all output neurons will have
the chance to be the winner of the corresponding input at
the beginning. Therefore, the initial size σ0 is set to be
equal to the radius of the 2D output net. The time constant
for the neighborhood function is τ2 = 200/log σ0.

The SOM network structure as well as the time constants
(τ1 and τ2) are determined after thorough trial-and-error testing
for achieving the best performance, i.e., the lowest MSE
(mean-squared error). The SOM’s learning stops when the
MSE almost keeps constant. The minimum learning cycle
is set as 10 000 in the experiment. Finally, the results of
optimal PCA and SOM as well as that of the optimal LLE are
summarized in table 2. The results of LLE here are the ones
reported in table 1.

11



Meas. Sci. Technol. 19 (2008) 095501 Y-H Liu et al

Table 2. Comparisons of the NN-classifier-based classification
accuracy and the testing time between LLE, PCA and SOM.

LLE PCA SOM

Error rate (%) 9.44 10.23 10.97
Average testing time (s/datum) 0.0525 0.0267 0.0311

From table 2 it can be seen that the classification error
rates for LLE, PCA and SOM are 9.44%, 10.23% and 10.97%,
respectively. Clearly, LLE outperforms the other two in terms
of the classification accuracy. However, the classification
speed of LLE is the slowest among the three. It is because
the testing phase of LLE requires solving the constrained
optimization problem again (see the first step of the LG
method), which is the shortcoming of the manifold learning
method. In contrast, PCA is the fastest among the three. It is
not surprising because there is only one step during the PCA
transformation: supposing that x ∈ R900 is the input testing
raw data, the output data y ∈ R111 are obtained by y = WT x,
where W is the 900 × 111 transformation matrix for which
the column vectors are the 111 eigenvectors chosen from the
solutions of the data covariance matrix.

In the testing phase of SOM, for an input datum x, we
need to find its corresponding output neuron (winner node) on
the output 2D net. This procedure is a bit time consuming,
because to find the winner we need to calculate the distances
between x and all the output neurons first. Then, the winner is
the one whose distance to the input datum x is the shortest. In
this experiment, there is a total of 1600 output neurons. If the
number of output neurons is reduced, the time for searching for
the winner can be reduced. However, the SOM classification
accuracy is poorer if the number of output neurons is reduced.
Nevertheless, the SOM’s testing speed (0.0311 s/data) is still
faster than LLE’s (0.0525 s/data). But this comparison is only
valid for the testing phase. The training of SOM is much
more time consuming than that of LLE. First, SOM has three
parameters to be tuned (τ1, τ2 and the size of the output layer)
while LLE has only two (k and d). Second, given fixed τ1,
τ2 and the size of the output layer, the convergence of MSE
of SOM network can only be reached after a huge number
of learning cycles. In our experiment, it takes at least 20
min. But, given a pair of (k, d), LLE only needs to solve
the constrained optimization problem expressed by equations
(1)–(3) during the training. It can be accomplished within 10
s in our experiment. Hence, LLE is much faster than SOM in
terms of the training speed.

5.1.4. Training and testing for SVDD. After the optimal
LLE is obtained, all the non-defect raw data in SN and the
defect raw data in SDare mapped into the 16-dimensional
embedding space. Therefore, we obtain two sets: a non-defect
embedding set SNE and a defect embedding set SDE , where
|SNE| = |SDE | = 420. Next, we need to find the optimal
SVDD for obtaining the best result of defect and non-defect
classification.

There are two free parameters in SVDD: the penalty
weight C, and the kernel parameter s. The penalty weight C
controls the number of non-defect embedding data that would

be rejected by the hypersphere. The larger the value of C the
smaller the number of non-defect embedding data rejected.
The value of C should be smaller than 1 [44]. In this study,
we intend all the non-defect training embedding data to be
accepted (within or on the boundary). Therefore, C should be
set as large as possible. After taking trial-and-error, we find
that as C is set to 0.8, the non-defect training embedding data
are accepted.

As for another parameter s, it should be tuned carefully
because it would affect the classification performance of
SVDD significantly. For a very large s, the solution
approximates the original spherically shaped solution.
Namely, the nonlinear SVDD becomes the linear SVDD,
which can be seen from the Taylor expansion of the Gaussian
kernel [23]. We take the 30 non-defect embedding data shown
in figure 9(b) to train an SVDD with a very large s (s = 50),
and the result is shown in figure 10(a). The boundary of the
resulting hypersphere is plotted with the white curve. Red dots
are the defect embedding data shown in figure 9(b). As we can
see, the resulting hypersphere is a rigid one, and is constructed
only by two support vectors (the two with white circles).
Though all the non-defect embedding data are accepted, one
defect embedding datum is also accepted. That is, there is one
‘missing defect’ when s is set to 50.

In contrast, for very small s the training data would be
orthogonal to each other in the space F since

as s → 0 : K(yi, yj ) = �(yi) · �(yj )

= exp(−‖yi − yj‖2/s2) ≈ 0, ∀i �= j. (25)

In such an extreme case, all data would become the support
vectors. For example, when s = 1, the result shows that all the
non-defect training embedding data become support vectors,
as shown in figure 10(b), and the hypersphere becomes very
tight. This result seems to be good because all the defect
embedding data are rejected while all the non-defect training
embedding data are accepted. However, it is only good for
training data; for such a very tight hypersphere, some unseen
non-defect embedding data would fall outside the boundary,
which increases the errors.

To get a satisfactory classification result, s should be
tuned within a moderate range. As we can see from
figure 10(c), a flexible boundary that is not too tight or too
loose is obtained when s = 20. In this case, not only all
non-defect embedding data are accepted but also all defect
embedding data are rejected.

From the above comparison, it can be seen that the kernel
parameter s must be adjusted carefully. Therefore, we search
for the optimal value of s ranging from 10 to 40 with an
interval of 2, i.e., there are 16 possible values of s in total:
[10, 12, 14, . . . , 40]. For each s, the tenfold cross-validation
is performed on the two sets: SNE and SDE . Finally the
optimal s is found to be 26, and the corresponding result is
listed in table 3. In table 3, a false positive/negative indicates
that a defect/non-defect test embedding datum is classified as
the non-defect/defect class.

In addition to testing SVDD, we also test the performance
of defect and non-defect classification by SVM on the two
sets SNE and SDE . Here we briefly review the basics of SVM
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(a)

(b)

(c)

Figure 10. SVDD training results under different Gaussian widths:
(a) s = 50; (b) s = 1; (c) s = 20.

[17, 19]. Let T ′ = {yi, zi}L′
i=1 be the training set for SVM,

where yi ∈ Rd are the training data, zi is its class label being
either +1 (non-defect class) or −1 (defect class) and L′ is the
size of T ′. SVM is to find the OSH that maximizes the margin

Table 3. Comparison of the classification results between SVDD
and SVM (%).

False-positive False-negative Error
rate rate rate

SVM 11.92 2.43 7.17
SVDD 2.41 8.76 5.87

of separation and minimizes the training errors, formulated as

minimize
1

2
‖w′‖2 + C ′

L′∑
i=1

ξ ′
i

subject to zi(w
′T �(yi) + b′) − 1 + ξ ′

i � 0, ∀i

ξ ′
i � 0, ∀ i

(26)

where w′ and b′ are the weight and the bias of the hyperplane,
respectively, �(y) : Rd → F is a nonlinear mapping function
which maps the data from Rd into a higher dimensional feature
space F, ξ ′

i are slack variables representing the error measures
of data points and the error weight C ′ is a parameter to be
chosen by the user, which measures the size of the penalties
assigned to the errors. By introducing the Lagrangian, the
primal optimization problem can easily be solved with its dual
form, the details of which can be found in [13, 14].

For SVM, the Gaussian function is also adopted as its
kernel. So, there are also two free parameters: the error
weight C ′ and the kernel parameter s. The optimal pair of
(C ′, s) = (100, 0.2) is determined after the tenfold cross-
validation is performed. The best cross-validation rate of SVM
is listed in table 3.

From table 3 we can see that compared with SVM,
SVDD obtains a lower false positive rate (2.41%). This result
shows that SVDD is able to obtain many fewer false positives
(missing defects), which indicates that as far as the defect
detection is concerned, SVDD outperforms SVM. However,
SVDD obtains a higher false-negative rate (8.76%) compared
with SVM (2.43%). That is, by SVDD, more non-defect
test embedding data are classified as defect ones because the
decision rule of SVDD used here is the regular one expressed
by equation (18). Therefore, we conduct another experiment
in which the decision rule for SVDD is the modified one
expressed by equation (21). We discuss the results in the
following.

5.1.5. Sensitivity test on an extension variable. The values
of the extension variable � are set as 0, 0.05R, 0.10R,

. . . , 0.25R, respectively, where R is the radius of the
hypersphere learned by the SVDD with the optimal pair
(C, s) = (0.8, 26). The results are listed in table 4.

First, as � = 0, the modified decision rule becomes the
regular one, and the corresponding results shown in table 4
are the same as those reported in table 3. From table 4, we
can see that when � = 0.05R and � = 0.10R, the obtained
false-negative rates are lower than when � = 0. It indicates
that properly enlarging the hypersphere can reduce the false
negatives effectively. However, the false-positive rate becomes
larger as the value of � increases further (from � = 0.15R

to � = 0.25R). This is because the margin between the
non-defect class and the enlarged boundary becomes too
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Figure 11. Some examples of defective GE images used for testing the IDD system.

Table 4. Classification results of SVDD with different extension
variables (%).

False-positive False-negative Error
rate rate rate

� = 0 2.41 8.76 5.87
� = 0.05R 2.41 7.02 4.65
� = 0.10R 2.41 2.35 2.37
� = 0.15R 11.84 0 5.97
� = 0.20R 13.79 0 7.34
� = 0.25R 18.96 0 9.83

large so that some defect test embedding data are accepted.
Nevertheless, we can see that the SVDD achieves the best
results in both false-positive rate and the false-negative rate
when � = 0.10R, and the error rate is only 2.37%. The
validity of the modified decision rule for reducing the false
negatives is demonstrated. Finally, based on the results
reported in this subsection (tables 1, 3 and 4), it can be
concluded here that in terms of defective-pixel and normal-
pixel classification, SVDD is superior to other classifiers
including the SVM and NN classifiers.

5.2. Performance test of the IDD system

The last subsection has shown that the appearance-based
classification stage is able to achieve a low error rate of 2.37%,
for which the inputs are the raw data obtained from the pixels.
This subsection further tests the performance of the proposed
IDD system for which the inputs are the GE images.

For this experiment, we collected a set of new GE images
in 2006, also provided by the same TFT-LCD manufacturer.
This set contains 150 images including 50 normal images and
100 defective images. Some defective images are shown in

Table 5. Detection results and testing time of the IDD system.

Output

Normal Defective

Input
50 normal GE images 50 0
100 defective GE images 2 98

Detection rate (50 + 98)/150 × 100% = 98.67%
Average testing time (s/image) (stage 1: 2.2323) + (stage 2: 1.2365) + (stage 3: 0.001) = 3.4788

figure 11. The 150 images are fed into the IDD system, one
at a time. Each input GE image would go through the three
stages (image preprocessing, appearance-based classification
and decision making) in IDD systems. The modified decision
rule is used for SVDD, and the extension variable � is set as
0.1×R. After the test, the results, including the detection rate
and the testing time, are obtained and are listed in table 5.

From table 5, we can see that the classification rates for
normal images and defective images are 100% and 98%,
respectively. The overall detection rate is 98.67%. The
effectiveness of the proposed IDD system for the GE inline
defect detection has been shown. In addition, for an input GE
image, the IDD system would take around 3.5 s to accomplish
the task of inline defect detection. The image preprocessing
stage takes 2.2323 s to segment the pixels from the input
image, while the appearance-based classification stage takes
only 1.2365 s to generate the classification outputs for the input
pixels. It is believed that the IDD system can be much faster
if the algorithms are implemented with C++ program.

In the TFT-LCD manufacture we cooperate with, existing
inspection equipment is used to capture the surface images
of the panels automatically. The inspection equipment would
take around 4 min (240 s) to scan a sheet of a glass substrate
containing six panels. During the scanning, 30 images will be
captured. The areas to be scanned are randomly determined.
After scanning, the acquired images are stored in an image
database. The proposed IDD system is separated from the
inspection equipment, and the IDD system is able to download
the images from the image database, one at a time. Then, the
system would start to detect the defect from the image. Since
the proposed IDD system is capable of processing an image
within 4 s, the time for detecting the inline defects on the
30 scanned images can be less than 120 s, which is much less
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than that for scanning one sheet of a glass substrate. Therefore,
the proposed IDD system is able to fulfill the requirement of
real-time inline defect detection for the TFT array process.

6. Conclusions

This paper has presented an inline defect-detection (IDD)
system for a TFT-LCD array process. The core of the system
is the appearance-based classification stage. To enhance
the performance of the whole system, the manifold-learning-
based LLE and the one-class-classification-based SVDD are
introduced into this stage such that the goals of high-accuracy
and high-speed defect detection can be achieved. The
effectiveness and the efficiency of the proposed IDD system
have been demonstrated by the experimental results carried
out on a set of real images captured in the TFT array
process. Additionally, the results not only indicate that the
one-class classifier SVDD outperforms the popular two-class
classifier SVM and the nearest neighbor classifier in terms
of defect and non-defect classification, but also show that
the classification performance can be improved by further
modifying the decision rule of SVDD.

Though the success of the proposed IDD system has been
demonstrated in the experiment, there are some requirements
and limitations.

(1) The proposed pixel segmentation method highly relies
on the projection operations. Therefore, the clearer the
images, the better the segmentation result. For best image
acquisition, the image plane of the camera must be focused
on the surface of the panel. In addition, to successfully
segment the pixels from the images, the panels to be
scanned must be aligned very well such that the direction
of the gate-electrode line in an image can be (nearly)
parallel to the horizontal (or vertical) axis of the camera’s
image plane. For example, in figure 1, the directions of the
two gate-electrode lines are nearly parallel to the vertical
axis of the image.

(2) Though SVDD is powerful for defect detection, it is not
suitable for defect classification because it is essentially
a one-class classifier. For defect classification, choosing
other adequate classifiers is necessary, for example the
SVM.

This work leaves some issues worth studying. Firstly,
for the purpose of system diagnosis, it is necessary to further
solve the problem of inline defect classification. Secondly,
removing the redundant ones from the given training samples
(non-defect training pixels) can not only maintain the high
classification performance of SVDD, but also speed up the
training of a SVDD detector. Therefore, minimum training
sample selection is a topic worth studying for SVDD. In
addition, due to possible environmental changes such as the
change of the process recipe, it is also necessary to develop an
online learning mechanism that can facilitate the retraining of
the IDD system in real time and increase the adaptability of
the system. Finally, the TFT array images used in this work
were supported by a LCD manufacturer in Taiwan. In order
to evaluate the robustness of the proposed IDD system, we
will continue to test the system on the images from other LCD
manufacturers in the future.
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