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Abstract
An effective calibration method, by minimizing measurement errors, has
been developed to increase the accuracy of 3D profilometry using digital
fringe projection and phase-shifting method. In digital fringe projection, the
image intensity and distribution of the sinusoidal fringe patterns projected on
the measured surface can be critically affected by lens distortions and image
aberrations. The phase difference calculated by the phase-shift principle can
be significantly influenced by these error sources and become nonlinear to
the optical phase difference (OPD) existing between the surface profiles.
This paper demonstrates a 3D calibration method developed to obtain
accurate system parameters for 3D surface measurement. The calibration
method utilizes a known accurate 3D calibrating block and projection
mathematical models for identification of the system parameters by means
of least-squares minimization. Accurate clouds of 3D data points can be
obtained by a 3D mapping method between the object space and the image
coordinates incorporating the phase difference. The measurement accuracy
of surface contouring can be maintained well within 2% of the overall
measurement range. Verified with the experimental results, the proposed
calibration method can effectively reduce more than 60% of the maximum
measured error in comparison with the traditional phase-conversion method.

Keywords: automatic optical inspection (AOI), 3D measurement, digital
fringe projection, phase shift, 3D profilometry, system calibration

(Some figures in this article are in colour only in the electronic version)

1. Introduction

3D surface profilometry is widely used in various precision
industries and high-tech applications. Laser triangulation,
structured light, passive stereo vision and interferometry are
common methods applied to reconstruction of 3D surface
contour information [1–5]. These traditional techniques rely
on various 3D measurement principles, resulting in different
accuracy and scanning efficiency, each being suitable for
certain types of applications. With the recent success of
digital micromirror devices (DMD) in digital light generation,

1 Address for correspondence: Institute of Automation Technology, National
Taipei University of Technology, No 1, Sec. 3, Chung Hsiao E Road, Taipei
106, Taiwan.

many new fringe projection approaches have been developed
to generate flexible and dynamic structured light patterns
with high contrast and brightness for 3D profilometry [6–9].
In these newly introduced approaches, digital fringes with
flexible projection periods and colours can be rapidly projected
onto the surface contour of the object. Using the computer
liquid crystal display (LCD) projection method, for example,
one can simultaneously generate arbitrary grating fringe
patterns of a plurality of sets of different colours, which
are superior to the ordinary fixed projection light grating
fringes, having flexible-structure light fringes and uniform
projection effect. However, because projected fringes are
digital, tiny discontinuities exist in the fringes that could not
give information on the surface target. This disadvantage
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Figure 1. Geometric relationship of 3D measurement using DMD for digital fringe projection (DFP).

may be overcome by increasing the spatial resolution of the
fringe projection or utilizing effective calibration methods
to minimize these potential measurement uncertainties. In
addition, the precision and quality of the LCD projection
method is not the best, and the size of the LCD is too bulky
for various industrial applications, which strictly requires
system minimization. DMD-based fringe projection has many
advantages against LCD in its dynamic pattern generation
and excellent fringe-image quality [10]. As DMD chips with
4k × 4k pixel resolution are currently available on the market,
the problem associated with digital fringe discontinuities can
be effectively alleviated.

Phase-shifting techniques have been widely used in DMD-
based 3D surface profilometry to increase lateral measurement
resolution. With phase-shifting techniques, a phase map can
be easily generated using phase wrapping and unwrapping
algorithms. However, in digital fringe projection, the image
intensity and distribution of the sinusoidal fringe patterns
can be critically affected by lens distortions and image
aberrations during both the digital fringe projection and the
image acquisition stages. Thus, the unscaled phase difference
calculated can be significantly influenced by these error
sources and become nonlinear to the optical phase difference
(OPD) existing between the surface profiles. The calculated
3D surface may lose accurate dimensional information of the
object. Therefore, an effective calibration algorithm must
be developed to convert the phase map into coordinates of
the object surface [11, 12]. Huang proposed a conversion
algorithm to determine the accurate values of the system
parameters. With a two-step calibration procedure, the
parameters were evaluated to determine optimized values
using an iteration algorithm. However, the nonlinearity errors
of both the DMD projection and camera image acquisition, as
well as the effects of image aberration and other factors, which
can greatly affect the mapping accuracy, have not been fully
addressed. Therefore, a new technique is proposed to model
and calibrate the system parameters used in digital fringe
projection (DFP) for 3D surface profilometry and camera
acquisition, and an effective calibration for determining the
system models. A new phase–coordinate conversion algorithm
is further proposed to convert the measured phase map to the
surface coordinates of the object.

2. Phase-shift algorithm using digital
fringe projection

As shown in figure 1, a DMD chip is used as the modulator to
produce arbitrary structured light patterns to be projected onto
the object. The structured light patterns can be controlled and
manipulated precisely by the computer. The fringe projection
coordinate system of the DMD unit, q ′(u′, v′), the object
coordinate system, Q(xo, yo, zo), and the image coordinate
system of the CCD camera, q(u, v), are established as shown
in figure 1, where the DMD is projecting fringes onto the
object with a projecting angle α, while the CCD is acquiring
images with a viewing angle ξ .

From the theory of Fourier optics, the relationship
between the phase changes and the optical path difference
in the above digital fringe projection system can be expressed
as follows:

�φ(x, y) = 4πZ(x, y)

P
, (1)

where �φ(x, y) is the phase difference, (x, y) is the spatial
coordinate, Z(x, y) is the local height variation and P is the
period of projected digital fringes.

The phase-shifting fringe analysis method has been well
described in [13, 14]. In short, a digital fringe pattern can be
expressed as

I (x, y) = a(x, y) + b(x, y) cos[2πf0x + �φ(x, y)], (2)

where a(x, y) is the background light intensity, b(x, y)
represents the modulation amplitude, f0 is the frequency of
the carrier digital fringes and �φ(x, y) is the desired phase
information.

Since the frequency of the carrier digital fringes ( f0) can
be described by the reciprocal of the projected fringe period
(P), the digital pattern can also be described as

I (x, y) = a(x, y) + b(x, y) cos[2πx/P + �φ(x, y)]. (3)

According to the principle of general phase shifting, when
the phase-shifting sequence is set as five evenly divided phases
within 2π and the optical image strength on Q can be recorded
as Ii=0–4, �φ(x, y) can be defined as follows:

�φ(x, y) = 1

2π
tan−1

(
2(I1 − I3)

2I2 − I4 − I0

)
. (4)
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Figure 2. Illustration of projection and image geometry of the 3D
surface profilometry using DFP.

Once imaged onto the CCD camera, the fringe pattern can
be translated to a phase map so that equation (4) can be used
to find the surface profile. The phase of the interferogram
can be determined by using either phase-shifting techniques
or Fourier transform analysis.

In figure 1, point O represents the centre of the optical
lens used for the CCD sensor. If Q represents a 3D point
located on the object’s surface, the depth (Z0) of point Q can
be represented as equation (2):

Z0 = a

tan α + tan ξ
, (5)

where ξ = tan−1
∣∣ u
Si

∣∣, (u, v) is the image coordinate, a is
the distance between two objective lenses, Si is the distance
between the image plane and the centre of the lens, α =
(n + δn)αp, αp is the angular pitch between projected fringes,
n is the order of the projected fringe where Q is located and δn

is the fractional order of the projected fringe pitch where Q is
located.

3. System analysis and calibration

As described in equation (1), the phase-shifting difference is
regarded as being proportional to the depth of 3D shape of an
object surface. However, due to the nonlinearity errors, the
image distortion of the digital fringe projection (DMD and its
lens set) and the image acquisition (CCD camera and its lens
set), the linearity of the phase shift with regard to the depth of
the object surface, in fact, does not exist [12]. The nonlinearity
errors of both the fringe projection and the image acquisition
can greatly affect the accuracy of 3D shape measurement. To
minimize these errors, the system parameters used in the digital
fringe projection (DFP) for 3D surface profilometry must be
systematically modelled and calibrated, with the measurement
errors in the measurement space mapped out and compensated
for.

3.1. System parameters analysis

As shown in figure 2, the DMD chip is deployed as a light
modulator to generate sinusoidal light fringes to be projected

through a set of optical lens and pitched onto the object. The
image of the projected fringe is then acquired by the CCD
through an objective. The fringe projection point of the DMD
unit, P(UDMD x, VDMD y), the corresponding object coordinate,
Q(xo, yo, zo), and the corresponding image coordinate system
of the CCD camera, C(Uid, Vid), are established as shown
in figure 2, where the DMD is projecting fringes onto the
object while the CCD is acquiring images with a viewing
angle ξ . It is obvious that any image aberration induced
by lens distortion or other possible errors may affect the
linearity between the calculated phase shift and the 3D surface
information, resulting in unacceptable measurement errors.
Thus, the system parameters used in fringe projection and
image acquisition should be analysed and calibrated to reduce
the errors.

3.2. System model of the 3D profilometry using digital
fringe projection

As shown in figure 2, the overall transformation from
the coordinates of the DMD chip, (UDMD x, VDMD y), via the
3D coordinates (Xo, Yo, Zo) of the object point Q in the
3D world coordinate system, to the real computer image
coordinates, (Uc x, Vcy), includes eight essential steps of
coordinate transformation for considering various potential
image distortions or errors, which are described as follows.
Although an approach similar to Tsai’s camera calibration was
utilized to define the camera model [15], a new mathematical
model and calibration method for characterizing the DFP for
3D surface profilometry was first proposed.

Step 1. Transformation from the DMD theoretical coordinates
(UDMD x, VDMD y) to the image coordinates (Ux, Vy) projected
on the DMD.

Manufacturing of the DMD chip may induce some
dimensional errors, which could bring in imprecise mapping
between the desired computer projection coordinates and the
real projected coordinates of the DMD chip. The coordinate
system of the DMD chip used for DFP is shown in figure 3.
The projected image coordinates (Uxd, Vyd) can be described
as follows:

Uxd = (UDMD x − Uc)Pdx/Fds,

Vyd = (VDMD y − Vc)Pdy,
(6)

where (Uc, Vc) are the centre coordinates of the DMD
theoretical frame, (UDMD x, VDMD y) are the image coordinates
of the DMD theoretical frame, Pdx is the pitch of adjacent
micromirrors in the X-direction of the DMD chip, Pdy is the
pitch of adjacent micromirrors in the Y-direction of the DMD
chip and Fds is the uncertainty projection scale factor of the
DMD chip.

The manufacturer of the DMD chip, Texas Instruments,
normally provides a nominal dimension of Pdx and Pdy

(defined in equation (6)) to micro or submicro accuracy.
However, an additional uncertainty parameter, Fds, has to
be introduced to accommodate a variety of factors, such
as possible manufacturing errors of the DMD chip, slight
hardware timing mismatch between projection hardware and
the image processing operation, or the imprecision of the
timing of micromirror operation.

Step 2. Lens distortion caused by image aberration in the
fringe projection.
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(Uc,Vc)Pdx
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Ncx

Figure 3. Coordinate system of digital micromirror device (DMD) chip used for fringe projection (Gx is the total number of micromirrors in
the X-direction, (Uc, Vc) are the original coordinates of the DMD chip, and Pdx and Pdy are the pitches of the micromirrors in the X- and
Y-directions, respectively).

Although fringe projection in an ideal imaging system can
be described by the pinhole model, the optical lens systems
could suffer from a number of inevitable geometric distortions
[15]. A geometric distortion generally occurs in the radial
direction with centres along the optical axis when spherical
surfaces of lenses are applied. With radial lens distortion up
to one order, the undistorted image coordinates (Uxu, Vyu) of
the DMD chip can be modelled using equation (7):

Uxu = Uxd
(
1 + kDMD

(
U 2

xd + V 2
yd

))
,

Vyu = Vyd
(
1 + kDMD

(
U 2

xd + V 2
yd

))
,

(7)

where kDMD is the lens distortion coefficient.

Step 3. Transformation from the undistorted image coordinates
to the 3D physical coordinates of the DMD chip.

The relationship between the physical coordinates and
the undistorted image coordinates of the DMD chip can be
modelled using perspective projection with pinhole optical
geometry. The physical coordinate system of the DMD chip
has its origin at the centre of projection, its z-axis along the
optical axis and its x- and y-axes parallel to the x- and y-axes
of the image. The physical coordinates (xDMD, yDMD, zDMD)
and the image coordinates can be governed by the perspective
projection equations

xDMD = zDMD

fDMD
Uxu, yDMD = zDMD

fDMD
Vyu, (8)

where fDMD is the effective focal length of the optical lens set
used in the fringe projection.

Step 4. Transformation from the 3D physical DMD coordinates
to the object world coordinate system using rigid-body
transformation.

The 3D physical DMD coordinates can be transformed
to the object world coordinate system by employing a
homogeneous transformation, defined as

HD =
[

RD TD

0 0 0 1

]
.

This transformation is unique when it is defined as 3D rotation
with three separate rotations followed by 3D translation, as

defined in equation (9).


xo

yo

zo

1


 =

[
RD TD

0 0 0 1

]−1




xDMD

yDMD

zDMD

1


 , (9)

where RD is the rotation matrix,

RD =

rD1 rD2 rD3

rD4 rD5 rD6

rD7 rD8 rD9




and TD is the translation vector,

TD =

TDx

TDy

TDz


 .

By combining the equations introduced from steps 1 to
4, the DMD theoretical coordinates (UDMD x, VDMD y) can be
related to the projected object world coordinate (xo, yo, zo)
by the following equation, defined as the fringe projection
model, Mp:

fDMD

zDMD

[
xDMD

yDMD

]

=
[

F −1
ds UDMD x

(
1 + kDMD

((
F −1

ds UDMD x

)2
+ (PdyVDMD y)

2
))

VDMD y

(
Pdx + PdykDMD

((
F −1

ds UDMD x

)2
+ (PdyVDMD y)

2
))

]
,

(10)

where 


xDMD

yDMD

zDMD

1


 = HD




xo

yo

zo

1


 .

Step 5. Transformation from object world coordinates to 3D
camera coordinates using rigid-body transformation.

Similar to step 4, the object world coordinates can
be transformed to the 3D physical DMD coordinates by
employing rigid-body transformation. The transformation
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is performed by 3D rotation followed by 3D translation, as
defined in equation (9).


xcd

yca

zca

1


 =

[
RC TC

0 0 0 1

] 


xo

yo

zo

1


 , (11)

where RC is the rotation matrix,

RC =

rC1 rC2 rC3

rC4 rC5 rC6

rC7 rC8 rC9




and TC is the translation vector,

TC =

TCx

TCy

TCz


 .

Step 6. Transformation from the undistorted image coordinates
to the 3D physical coordinates of the DMD chip.

Similar to step 3, the relationship between camera
coordinates and undistorted image coordinates of CCD chip
can be modelled using perspective projection with pinhole
optical geometry. The camera coordinates (xca, yca, zca)
and the image coordinates (Uiu, Viu) can be governed by the
perspective projection equations

Uiu = fca
xca

zca
, Viu = fca

yca

zca
, (12)

where fca is the effective focal length of the optical lens set
used in the camera.

Step 7. Lens distortion caused by image aberration in image
acquisition.

Similar to step 2, the objective lens used in the camera
could also suffer from a number of inevitable geometric
distortions. The distorted image coordinates (Uid, Vid) of the
camera chip can be modelled using equation (13) when radial
lens distortion up to one order is taken into consideration:

Uid
(
1 + kca

(
U 2

id + V 2
id

)) = Uiu,

Vid
(
1 + kca

(
U 2

id + V 2
id

)) = Viu,
(13)

where kca is the lens distortion coefficient.

Step 8. Transformation from distorted image coordinates (Uid,
Vid) to computer image coordinates (Ucx, Vcy) projected on the
CCD chip.

Similar to step 1, manufacturing of the CCD chip
may induce some dimensional errors, which could bring in
imprecise mapping between the undistorted image coordinates
of the CCD chip and the desired computer image coordinates.
The computer image coordinates (Ucx, Vcy) can be described
as follows:

Ucx = FcsNcxUid/PcxNsx + Cx,

Vcy = Vid/Pcy + Cy,
(14)

where (Cx, Cy) are the centre coordinates of the computer
frame memory, Pcx is the pitch of adjacent sensor elements in
the X-direction of the CCD chip, Pcy is the pitch of adjacent
sensor elements in the Y-direction of the CCD chip, Ncx is
the number of sensor elements in the X-direction, Ncy is the
number of pixels in a line as sampled by the computer, Fcs is
the uncertainty projection scale factor of the CCD chip.

By combining equations (11)–(14), the computer image
coordinates (Ucx, Vcy) can be related to the projected object
world coordinates (xo, yo, zo) by equation (15), defined as the
camera acquisition model, Mc:

fca

zca

[
xca

yca

]

=
[
F−1

cs UcxPcxNcx
(
1 + kca

((
F−1

cs Ucx
)2

+ (PcyVcy)
2
))/

Nmx

Vcy
(
PcxNcx/Nmx + Pcykca

((
F−1

cs Ucx
)2

+ (PcyVcy)
2
))

]
,

(15)

where 


xca

yca

zca

1


 = Hca




xo

yo

zo

1


 ,

Pcx is the pitch of adjacent sensor elements in the X-direction
of the CCD chip, Pcy is the pitch of adjacent sensor elements
in the Y-direction of the CCD chip, Fcs is the uncertainty
projection scale factor of the CCD chip, Ncx is the number of
sensor elements of the CCD chip along the X-direction and Nmx

is the number of pixels in a row registered by the computer.
Furthermore, by combining the fringe projection model

Mp and the camera acquisition model Mc, the computer image
coordinates (Ucx, Vcy) can be related to the DMD theoretical
coordinates (UDMD x, VDMD y) by the following mapping model
MT:


fDMD(rD1xo + rD2yo + rD3zo + TDx)(rD7xo + rD8yo + rD9zo + TDz)
−1

fDMD(rD4xo + rD5yo + rD6zo + TDy)(rD7xo + rD8yo + rD9zo + TDz)
−1

fca(rC1xo + rC2yo + rC3zo + TCx)(rC7xo + rC8yo + rC9zo + TCz)
−1

fca(rC4xo + rC5yo + rC6zo + TCy)(rC7xo + rC8yo + rC9zo + TCz)
−1




=




F−1
ds UDMD x

(
1 + kDMD

((
F−1

ds UDMD x

)2
+ (PdyVDMD y)

2
))

VDMD y

(
Pdx + PdykDMD

((
F−1

ds UDMD x

)2
+ (PdyVDMD y)

2
))

F−1
cs UcxPcxNcx

(
1 + kca

((
F−1

cs Ucx
)2

+ (PcyVcy)
2
))/

Nmx

Vcy
(
PcxNcx/Nmx + Pcykca

((
F−1

cs Ucx
)2

+ (PcyVcy)
2
))


.

(16)

3.3. System calibration method

The system setup for calibration is depicted in figure 4. The
calibration system consists of four main modules, namely
digital fringe projection, calibrating blocks with known
accurate geometry, image acquisition and computer control
unit. Digital fringes can be generated and controlled by the
computer and a digital light projector with a built-in DMD,
being projected through a set of optical lenses for pattern
size adjustment and light collimation, and then cast on to
the calibrating block. The calibrating block is made by
laser lithography on Fuji-IP-GPC glass film, in which the
position accuracy of the marked patterns can reach 1 µm within
50 mm × 50 mm. Another accurate reference surface is made
of a silicon substrate with a smooth surface coating synthesized
by chemical vapour deposition (CVD) and is deployed as
a calibrating reference for digital light projection. The
surface roughness of the reference plate was measured using
white light interferometry and proved to be within 1 µm. The
deformed structured fringes can be captured by the image
acquisition unit, which is composed of an optical objective
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Figure 4. Schematic diagram of calibration setup for 3D surface profilometry using digital fringe projection.
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MT being fully identified 

Figure 5. Two-step calibration approach for identifying the system
model.

lens and image sensing element. The unit then outputs the
image information to the main control unit, which is used to
adjust and control the structured fringe output of the optical
projection unit and process the image information obtained by
the image capture unit.

To simplify the procedure in identifying the above
complex system model, a two-step approach is proposed
to determine the parameters required for accurate 3D
measurement. As shown in figure 4, the measurement system
can be mainly divided into two parts, namely modules of image
acquisition and digital fringe projection. The mathematical
models of these two modules can be defined as Mc and Mp,
respectively. Figure 5 shows the procedure used in the two-step
approach to the system calibration. Prior to characterization
of the digital fringe projection module, the first step of the
camera model calibration is used to identify the parameter
model Mc using the mapping between a target plate with known
geometry and its corresponding image coordinates. Once Mc

is identified, the mapping between the DMD fringe projection
and the object coordinate frames is performed to identify the
parameter model Mp for digital fringe projection.

Yes 

No 

Image acquisition on the target object 

with known geometry 

Binary operation 

Sub-pixeling accuracy calculation of coordinates 

of target points 

Correspondences between target points and 

the corresponding images are obtained 

Micro-stepping 

motor shifts to next 

position 

Decide if more image 

planes are to be taken 

Parameters identification 

Figure 6. Calibration method and procedure used to identify
model Mc.

3.3.1. Calibration method of image acquisition for identifying
model Mc. This stage of calibration aims to identify the
parameter model Mc. In image acquisition calibration, an
accurate target of known geometry is imaged by the CCD
along different Z-axis positions, in which a microstepping
motor with positioning accuracy better than 1 µm is used to
move the known target for creating a non-coplanar inspection
volume.

The calibration method and procedure used to identify
model Mc is shown in figure 6. Image subpixeling with
an accuracy up to 1/50 pixel was used to increase the
precision of determination of the target points of the calibration
plate. Correspondences between the target points and the
corresponding images are obtained. Here, the procedure
for determining Mc is similar to Tsai’s two-step method
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(Uid, Uid)

Mc
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Figure 7. Calibration of model Mp for digital fringe projection.

[15]. In the first step, constraints between parameters are not
enforced and the model (Mc) is simplified into linear equations.
These estimated parameter values are applied only as starting
values for the final optimization. In a subsequent step, the
parameters of interior orientation, exterior orientation and
distortion are adjusted to minimize the rest of the parameters
using iterative numerical optimization such as a modified
Levenberg–Marquardt method that best fits the observed image
points with those predicted from the target model. Parameters
estimated in the first step are iteratively optimized in the
process.

3.3.2. Calibration method of digital fringe projection for
identifying model Mp and the total mapping model MT. As
shown in figure 7, a set of target points (square dots) with
known geometry are projected onto the reference plate, in
which the plate can be shifted to different preset locations
along the object Z-axis, to form a non-planar measurement
space. The calibration procedure of digital fringe projection
for identifying models Mp and MT is shown in figure 8. The
deformed fringe images shown on the reference plate have
been acquired using the image acquisition system, in which
the parameter model Mc can be established by the above
camera calibration model. Once the corresponding image
coordinates of the projected target dots are identified, (xo, yo)
of the object coordinates, (xo, yo, zo), can be derived from
Mc. Meanwhile, zo can be directly obtained from the known
Z-position of the reference plate. With these calculated
quantities, the parameter model Mp can be easily identified
from the mapping between the object coordinates (xo, yo, zo)
and the DMD theoretical coordinates (UDMD x, VDMD y) in a
non-planar measurement space. Similar to the numerical
optimization used in identifying Mc, the parameters of interior
orientation, exterior orientation and distortion are calculated
to minimize the rest of the parameters using the modified
Levenberg–Marquardt method. Parameters estimated in the
second step are iteratively optimized in the process to identify
Mp. As a result, the total mapping model MT can then be
obtained by combining Mc and Mp.

From DMD, project a set of target

points (rectangular) with known

geometry to the reference plate 

To acquire the deformed pattern

images by using the image

acquisition system 

To derive the corresponding object

coordinates (xo,yo,zo) from the given

model Mc  and the preset known zo

coordinate of the reference plate.

To derive the parameters model Mp

by identifying the mapping between

the object coordinates (xo,yo,zo) and

the DMD theoretical coordinates

(UDMDx, VDMDy). 

Establishment of the total mapping

model MT for accurate digital fringe

projection

Figure 8. Calibration procedure of digital fringe projection for
identifying model Mp and the total mapping model MT.

4. 3D mapping algorithm between phase difference
and physical coordinates

Phase map �φi,j calculated from equation (4) represents an
unscaled 3D surface contour that requires a 3D mapping
algorithm to transform �φi,j into accurate depth information.
Although established model MT can help transferring distorted
to undistorted image coordinates and projecting undistorted
digital fringes onto the object surface, in order to obtain
accurate and undistorted 3D coordinates of the object surface,
a phase–coordinate mapping algorithm needs to be developed
to perform such coordinate conversion. In our approach, the
object coordinates of the surface contour can be expressed
by the following equation using a least-squares minimization
approach described as follows:

xo = F(Uiu, Viu, φ) =
n∑

c=0

n−c∑
b=0

n−c−b∑
a=0

SabcU
a
iuV

b
iuφ

c,

yo = G(Uiu, Viu, φ) =
n∑

c=0

n−c∑
b=0

n−c−b∑
a=0

QabcU
a
iuV

b
iuφ

c,

zo = H(Uiu, Viu, φ) =
n∑

c=0

n−c∑
b=0

n−c−b∑
a=0

RabcU
a
iuV

b
iuφ

c,

(17)

where (xo, yo, zo) are the object coordinates of the surface
contour, (Uiu, Viu) are the undistorted image coordinates, φ is
the phase difference of (Uiu, Viu), Sabc, Qabc and Rabc are the
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Table 1. Results of a calibration example of the image acquisition module Mc and the digital fringe projection model Mp.

(A) The image acquisition module Mc

fca (mm) kca (mm−1) Fcs Cx,Cy (pixels)
61.460 679 –7.850 358 × 10–4 1.033 787 314.832 018, 246.122 836

HC =




0.9984 −0.0027 0.055 57 −215.987
0.002 33 0.999 98 0.006 74 −213.712

−0.055 59 −0.006 60 0.998 43 475.320
0 0 0 1




Object space mapping error (xo, yo) (mm)
Average errors Standard deviation Maximum errors
0.0168 0.008 0.0430

(B) The digital fringe projection model Mp

fDMD (mm) kDMD (mm−1) Fds Ux, Vy (pixels)
13.7296 –2.0238 × 10–3 1.0338 (314.83, 246.12)

HD =




0.961 12 −0.000 17 0.276 03 −231.265
−0.003 11 0.999 930 0.011 45 −222.805
−0.276 01 −0.011 86 0.961 09 214.141

0 0 0 1




Object space mapping error (xo, yo) (mm)
Average errors Standard deviation Maximum errors
0.042 0.017 0.068

coefficients of the mapping to be identified for xo, yo and zo,
respectively, and n is the mapping order.

Sabc, Qabc and Rabc can be further identified using the
least-squares method, expressed as follows:

∂
∑m

k=0 (xk − x)2

∂Sabc

= 0,

∂
∑m

k=0 (yk − y)2

∂Qabc

= 0,

∂
∑m

k=0 (zk − z)2

∂Rabc

= 0,

(18)

where m is the number of target points used in the
calibration.

5. Experimental results and discussion

An example of camera calibration was taken to verify the
effectiveness of the proposed two-step calibration approach.
The experimental setup is illustrated in figure 4 and an accurate
target of known geometry was imaged by the CCD (JAI, 1/3
inch, 640 × 480 pixel resolution) at ten different positions
along the Z-axis with a pitch of 1 mm. A calibrating
volume of 19.5 × 14 × 10 mm3 and a total number of
1374 corresponding points were first obtained to identify its
parameter model Mc. To obtain accurate corner coordinates of
the marked squares, an image subpixeling method developed
from the moment-preserving principle was used to increase
the precision of determination of the target points of the
calibration plate with an accuracy up to 1/50 pixel [16].
With numerical optimization using the modified Levenberg–
Marquardt minimization, model Mc can be obtained and shown
in table 1(A). It was found that the maximum mapping error
between the object space and the image frame was 43.0 µm,
while the averaged error and standard deviation were 16.8 and
8 µm, respectively. The maximum error was less than 0.31%

of the overall space range, indicating a reasonably accurate
parameter model being established and identified.

With an identified model Mc, model Mp can also be
established using the calibration procedure shown in figure 8.
A set of square dots with known geometry is projected onto
the reference plate, in which the plate can be sequentially
shifted to ten different locations along the object Z-axis,
to form a non-planar measurement volume. The same
calibrating volume (19.5 × 14 × 10 mm3) with a total
number of 960 pairs of target points and corresponding
image coordinates was taken to identify the parameter model
Mp. The DMD theoretical coordinates (UDMD x, VDMD y) and
their corresponding projection coordinates (xo, yo, zo) on the
object can be derived from the known model Mc and each
known zo coordinate of the reference plate. Thus, with the
same numerical optimization using the modified Levenberg–
Marquardt minimization, model Mp can be obtained and is
shown in table 1(B). It was found that the maximum mapping
error between the object space and the DMD frame was
68.0 µm. Moreover, the fitted errors were larger than those
for Mc. This can be reasonably explained as model Mp being
affected by the error propagation from model Mc when Mc was
employed to derive the object coordinates (xo, yo) from the
acquired image coordinates. With these two identified models
and their associated system parameters, the total mapping
model MT can then be obtained, in which the maximum
mapping errors can be kept below 68.0 µm in this case.

To verify the effectiveness of the proposed 3D mapping
algorithm between the phase difference and the physical
coordinates, an example of the phase–coordinate conversion
was performed. In a calibration volume of 19.5 (l) × 14 (w) ×
10 (h) mm3, digital fringes with sinusoidal intensity
modulation were projected to ten non-planar reference planes
along different Z-positions. The world object coordinates were
identified using the known coordinates of the target points
on the calibrating plates. The undistorted image coordinates
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Figure 9. Distribution of fitted errors as a result of phase-coordinate conversion using a least-squares fitting method when the proposed
calibration was applied.
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Figure 10. Distribution of fitted errors as a result of phase-coordinate conversion using a least-squares fitting method when no calibration
was applied.
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Figure 11. Relationship between fitting order (n) and fitted errors.

can be obtained by deriving model MT, which was identified
from the previous camera calibration. Moreover, the phase
difference �φi,j of each identified image coordinate can be
calculated by performing the five-step phase-shifting method,
as described in equation (4). In total, 1252 pairs of known
object points and their corresponding image coordinates were
obtained for the phase–coordinate conversion. As a result,
the distribution of fitted errors is shown in figure 9, where
the maximum fitted error was less than ±35 µm (well less
than 1% of the measurement depth range) and the averaged
fitted error was 21 µm. In contrast, when no calibration was
applied, the maximum fitted error shown in figure 10 could
reach 192 µm (up to 1.92% of the overall measurement depth
range). Comparing the results reveals the effectiveness of
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(d )

Figure 12. Experimental results of measurement example: (a) two overlapping gauge blocks with an accurate step size of 2.000 mm;
(b) image of digital fringes being projected onto the object where the five-step phase-shifting method was applied; (c) image of wrapped
phase map; (d) image of unwrapped phase map using Goldstein algorithm; (e) image of 3D map being reconstructed.

Table 2. The coefficients obtained from the 3D mapping algorithm when n was set to 3 for the experimental data.

Item Mapping function Sabc Qabc Rabc

1 Constant 198.805 710 5470 199.555 903 2100 9.630 888 7585
2 Xcr 0.061 263 6501 0.001 769 9392 −0.064 557 5020
3 X2

cr −0.000 004 2362 0.000 002 0968 −0.000 009 0715
4 X3

cr −0.000 000 0068 −0.000 000 0108 0.000 000 0603
5 Ycr −0.000 305 5156 0.054 881 0077 −0.004 607 4016
6 Y 2

cr 0.000 003 7990 0.000 003 4216 0.000 002 2703
7 Y 3

cr −0.000 000 0055 −0.000 000 0041 0.000 000 0003
8 φ 1.005 625 2724 0.394 401 8305 −10.940 628 5268
9 φ2 0.002 374 8150 0.042 589 3328 −0.029 260 5152

10 φ3 −0.004 779 5636 −0.044 366 3684 0.252 350 6402
11 XcrYcr 0.000 000 2123 −0.000 005 4712 −0.000 001 3274
12 X2

crYcr −0.000 000 0014 −0.000 000 0009 0.000 000 0065
13 XcrY

2
cr −0.000 000 0013 −0.000 000 0046 0.000 000 0027

14 Xcrφ −0.001 151 3009 0.000 384 5836 −0.001 477 4927
15 X2

crφ −0.000 001 2193 −0.000 005 0215 0.000 026 9573
16 Xcrφ

2 −0.000 130 9835 −0.000 835 7269 0.004 246 6063
17 Ycrφ 0.000 105 4179 −0.001 149 1873 −0.000 682 4867
18 Y 2

crφ −0.000 000 1604 −0.000 000 3783 0.000 001 7691
19 Ycrφ

2 −0.000 031 9447 0.000 003 5552 0.000 156 8114
20 XcrYcrφ −0.000 000 4599 0.000 000 0647 0.000 001 9387
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Figure 13. Experimental results of measurement example: (a) image of reconstructed 3D map when no proposed calibration method was
implemented and the direct coordinate conversion (case A) was used to calculate the 3D coordinate; (b) the measured error distribution of
the 3D surface reconstruction.

Table 3. Evaluation of measured errors of 3D reconstructed map based on three different cases: (A) using a direct coordinate conversion
between the phase difference and the depth data with a constant K; (B) using the proposed 3D mapping algorithm but no proposed
calibration; (C) using both the proposed two-stepped calibration and the proposed 3D mapping algorithm.

Averaged Maximum Standard Error percentage of the overall
Cases error (µm) error (µm) deviation (µm) measurement range (%)

A 29.2 68.7 8.6 3.44
B 21.3 50.2 7.8 2.51
C 8.1 22.8 4.3 1.14

the calibration approach in reducing the system nonlinearities
existing in the optical devices deployed in digital fringe
projection and image acquisition.

In addition, it was interesting to note that the order
number (n) used in the least-squares fitting algorithm affects
the accuracy of the conversion, as shown in figure 11. The
fitted error is converged when n is increased up to 3, but
it tends to converge to 21 µm when an order higher than
3 is applied. Table 2 shows the coefficients obtained from
the above data-mapping algorithm when n was set at 3 for
the previous experimental results. Meanwhile, it is worth
noting that higher order fitting could bring instability to the
conversion.

Meanwhile, to attest to the measurement accuracy of the
developed calibration approach for 3D surface profilometry,
we conducted an experimental measurement on accurate
gauge blocks (Mistutoyo gauge, grade 1, ceramic type).
Two overlapping gauge blocks with an accurate step size of
2.000 mm (shown in figure 12(a)) were deployed for evaluation
of measurement accuracy. Figure 12(b) shows the image
of digital fringes being projected onto the object where the
five-step phase-shifting method was applied; figures 12(c)
and (d) illustrate the wrapped phase map obtained from the
five-step phase-shifting method and the unwrapped phase
map calculated using the Goldstein algorithm, respectively.
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Figure 14. Experimental results of measurement example:
(a) image of reconstructed 3D map when the proposed two-step
calibration was implemented to calculate the undistorted image
parameters (case C), for obtaining the minimized fitted errors during
the 3D coordinate and phase conversion; (b) the measured error
distribution of the 3D surface reconstruction.

In addition, the 3D map measured and reconstructed using
the developed 3D surface profilometry both with and without
calibration was employed to evaluate the system measurement
accuracy. Meanwhile, the 3D map reconstructed when the
depth information was directly calculated by phase difference
multiplying a constant parameter, K (=10.896 in this case),
which was obtained by the traditional calibration method using
the known accurate step size, was also compared with the
above two cases.

As shown in table 3, the averaged and maximum measured
errors for case A, obtained by the traditional phase conversion,
are 29.2 and 68.7 µm, respectively, when using a direct
coordinate conversion between the phase difference and the
depth data using a constant K. Figures 13(a) and (b) show
the 3D surface map and its measured error distribution,
respectively. In comparison with case A, case B has a sizeable
improvement of 27% in measurement accuracy when the
proposed 3D mapping algorithm was implemented. Most
significantly, case C, where both the proposed two-step
calibration and the proposed 3D mapping algorithm were

implemented to minimize the measured errors, has effectively
reduced 67% of the measured errors when compared with
case A. The 3D surface map and its measured error distribution
are shown in figures 14(a) and (b), respectively. The results
indicate that the measured errors, less than 1.5% of the
measured step size, can be achieved by using the proposed
strategies.

6. Conclusions

A new calibration technique has been successfully developed
to obtain the system parameters for accurate 3D surface
profilometry using digital fringe projection. The measurement
errors caused by the nonlinearity due to inherent lens
distortions and image aberrations of the 3D optical
measurement system can be accurately characterized by
the developed parameter models and two-step calibration
procedure. With identified system models, undistorted (or
original) digital fringes can then be projected onto the object
surface through digital fringe projection and distorted image
coordinates can be transferred to undistorted ones in the image
acquisition process, for minimizing the system nonlinearity
of 3D surface profilometry using DFP. Meanwhile, an
effective phase–coordinate mapping algorithm using least-
squares minimization has also been developed to perform data
conversion between the phase differences and the coordinates
of the object. The maximum fitted errors can be controlled
within 2% of the measurement depth range. In comparison
with the traditional phase-conversion method, 67% of the
maximum measured error can be effectively reduced when
the proposed calibration and data conversion methods are
applied.
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