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Measurement of the point-spread function of a
noisy imaging system
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The averaged point-spread function (PSF) estimation of an image acquisition system is important for many
computer vision applications, including edge detection and depth from defocus. The paper compares several
mathematical models of the PSF and presents an improved measurement technique that enables subpixel es-
timation of 2D functions. New methods for noise suppression and uneven illumination modeling were incor-
porated. The PSF was computed from an ensemble of edge-spread function measurements. The generalized
Gaussian was shown to be an 8 times better fit to the estimated PSF than the Gaussian and a 14 times better
fit than the pillbox model. © 2007 Optical Society of America

OCIS codes: 110.2970, 110.4850, 220.4840, 350.4600, 150.5670, 220.2560.
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. INTRODUCTION
he research reported concerns mathematical modeling
nd practical measurement of the point-spread function
PSF) of focused and defocused image acquisition sys-
ems, such as digital TV cameras. This measure of image
lur can be utilized to optimize image processing func-
ions such as edge detection [1–3] and depth-from-defocus
DFD) depth estimation [4–11]. An image acquisition sys-
em typically consists of optical components (such as
enses and apertures) and electronic components (such as
he 2D CCD array, antialiasing, and communication cir-
uits). Each of the components in the optical and elec-
ronic paths can be considered as spatial low-pass filters.
onsidering the system in the terminology of system

heory, the transfer functions of each of its components
an be estimated and then all combined to find the overall
ransfer function. Alternatively—and the approach taken
n this work—the transfer function for the entire system
an be measured. Typically, input signals are provided in
he form of bar patterns, point sources, or step edges. For
ntire system measurement, the output signal is the cap-
ured digital image.

The Fourier transform of the PSF is the optical transfer
unction (OTF), and both measures have been widely used
o characterize systems. The lens can be thought of as a
D low-pass filter with a spatial cutoff frequency that is
imited by diffraction and aberration effects. The 2D ar-
ay samples the image and also includes low-pass filter-
ng, as the individual sensor elements have a finite area
equired for low light operation. Together the elements
ile the image plane. As a simple model, charge generated
y a photon at a point in an element will distribute evenly
cross the tile [12]. The sampled value is then propor-
ional to the accumulated charge from all the photons
onverted in the element during the acquisition phase
nd since the previous sample was acquired. The CCD is
ead by a raster scanning process [12]. Here the charge in
ach of the elements is transferred to vertical columns of
1084-7529/08/010159-12/$15.00 © 2
hift registers. In turn these shift into a horizontal regis-
er and are shifted to an analog charge-to-voltage con-
erter and then further electronics that provide, nomi-
ally, 1D signal processes such as low-pass filtering and
igitization. The low-pass filtering provided by the lens is
ecessary as it acts as an antialiasing filter for the image
iscretization. CCD elements require a relatively large
rea for the camera to work well at low light levels, and
his finite area limits the high-frequency response.

PSF measurements can be limited by the Nyquist fre-
uency of the discretization in the acquisition system;
owever, an averaging and accumulation process was re-
earched to overcome this [2,13,14]. This process required
knife- or step-edge to be imaged; i.e., this is not a gen-

ral technique for all images. The image was of a blurred
tep and several edge-spread functions (ESF) were esti-
ated along the length of the edge. The ESFs were then

ach registered to a reference point and accumulated to
orm a superresolution ESF that contained frequency in-
ormation above the Nyquist limit of the sampling grid.
he PSF is more useful than the ESF for DFD measure-
ent and image simulation as it can be directly convolved
ith an input image to estimate the output image [2,6,9].
he PSF is obtained by differentiating the ESF; however,
ven low levels of noise in the ESF can result in high lev-
ls of noise in the PSF and render it unusable. The source
f the noise is in the imaging system’s sensors and elec-
ronics. In this research it was found that both digital and
nexpensive analog TV cameras had too poor a signal-to-
oise ratio (SNR) for the previous PSF measurement
echniques to work reliably.

In this paper we compare research into several meth-
ds to both reduce the noise in the ESF estimation and to
ccurately model usable PSFs for the acquisition system.
n Section 2 we review PSF measurement techniques and
escribe how a superresolution ESF—and eventually a
SF—is computed from an ensemble of low-resolution
easurements. In Section 3 we examine the theoretical
008 Optical Society of America
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SF models that result from consideration of both geo-
etric and diffraction optics. In Section 4 we describe im-

rovements to the traditional superresolution PSF mea-
urement technique that involve (i) compensation for
onuniform illumination within the lightbox used to pro-
uce the test images, (ii) a regularized numerical differ-
ntiation process to limit noise in the computed PSF, and
iii) models of the ESF that have been developed and used
o compute PSFs that have then been compared with the
heoretical models described in Section 2. Fitting the cor-
ect ESF model to the measured data is key to obtaining
ccurate PSFs for the system. Section 5 presents the ex-
erimental results from both focused and defocused sys-
ems. Specific 1D results have been used to demonstrate
roblems with noise in the ESF estimation, and bias to
he PSF when nonuniform illumination remains uncom-
ensated. Then the results of ESF fitting experiments
ave been reported and discussed. Finally 2D PSF plots
ave been produced for the most successful fitting meth-
ds. Section 6 provides conclusions.

. MEASUREMENT TECHNIQUES
ere we are proposing PSF measurement of the whole

ystem; however, methods exist to measure individual
SFs for each component. These can then be combined to
ive the overall PSF. Lasers have been used to measure
he PSFs of individual pixels within the CCD array
15,16]. These are a function of wavelength, and so a com-
lete characterization is lengthy and complex. However,
he PSF for the array is spatially variant and widely used
n image restoration. Classically, images of sinusoidal
ratings have been used for OTF lens measurements.
hen a focal-plane array (FPA) images the grating, the

iscretization means that the FPA must be moved relative
o the image to give minimum and maximum modulation
ransfer function (MTF) curves [17]. Sinusoidal laser in-
erference patterns have been used by Marchywka and
ocker [18], and laser speckle techniques can also be em-
loyed [19]. The main limitation of lasers is the mono-
hromatic light. Spatial domain techniques have been
sed to measure the PSF of a lens. A scanned point source
an be used to obtain a 2D PSF containing local blur and
berration information up to the Nyquist limit of the FPA.
2D unit intensity step, known as a knife-edge, can be

asily produced experimentally using a lightbox. Differen-
iating the response of the lens, the ESF, gives the PSF.

The knife-edge technique can be extended to acquisi-
ion system measurement. If the system contains a FPA,
hen undersampling effects cause errors in the PSF esti-
ation due to aliasing. In practice PSF information be-

ond the Nyquist limit of the array is often required. Re-
chenbach et al. [13] solved the problem by using many
SF profiles to create a superresolution image of a 1D
dge. Tzannes and Mooney [14] fitted a sum of three
ermi–Dirac functions to the edge to reduce the noise
uring differentiation to obtain the PSF, and Staunton [2]
xtended the technique to measure the ESF for many dif-
erently angled edges to produce a 2D PSF and MTF. At
dge angles other than 0 or 90°, a resampling of the data
as performed to obtain the discrete ESFs along normals

o the edge. A normal was set and then the samples clos-
st to it projected onto it from a direction parallel to the
dge as shown by the dashed lines in Fig. 1. The sampled
alues were then not equally spaced along the normal,
ut this was irrelevant to the following superresolution
tage.

To understand the superresolution stage used in
2,13,14], consider an edge oriented close to but not actu-
lly at 0°. The edge cuts each pixel along its length so that
art of the pixel is brightly illuminated, and part is dark.
he sampled value for each pixel along the edge is propor-

ional to the averaged illumination throughout the pixel.
ach sampled value along the edge is therefore different.

n the same way each of the many ESFs located at the
ixels along the edge comprises differently sampled val-
es. These low-resolution ESFs are then registered with
ne another and assembled to form a single high-
esolution ESF that is resampled onto typically a 0.1 pixel
rid.

The proposed knife-edge technique is simple to per-
orm, but the PSF measurements are averaged along the
ength of the edge. Such an average is advantageous for
hift invariant models used in processes such as edge-
etector testing [2], DFD [6], or image simulation, but
ay be disadvantageous for processes that require mod-

ls of lens aberrations in addition to spherical aberration,
uch as may be required for image restoration [20]. These
ay require space variant estimation of the PSF.

. THEORETICAL PSF MODELS
. Geometrical Optics
entland [4] showed that for the simple defocused optical
ystem shown in Fig. 2, and assuming geometrical optics,
he PSF is a pillbox shape with a blur circle radius given
y

r =
vou − F�vo + u�

2fu
, �1�

here vo is the distance between the lens and the CCD, u
s the depth of the object, F is the focal length of the lens,
nd f is the f-number, which is defined as f=F /d, where d
s the diameter of the aperture. The distance u is the dis-

Fig. 1. Migration of samples onto the ESF.
o
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ance at which an object would appear in focus on the im-
ge plane.

. Diffraction Approach
he PSF h�x� of a focused lens that is subject to diffrac-
ion effects and with optical aberrations as a function
�x�, but neglecting sampling due to the FPA, is given by
21] as

h�x� = �� A���ej����e−j2��x/�Fd��2

, �2�

here x is a position vector, A��� is the aperture function,
is the wavelength of light, and F is the focal length of

he lens. Out-of-focus blurring can be modeled as a qua-
ratic aberration of the form

��x� =
�

�
� 1

u
+

1

v
−

1

F��x�2, �3�

here u is the distance between the object and the lens,
nd v is the distance between the FPA and the lens. By
ubstituting Eq. (3) into Eq. (2); assuming polychromatic
ight with equal intensities between wavelengths �1 and
2 and assuming the aperture function A��� to be a circle
f radius r, then in 1D the PSF becomes

h�x� =�
�1

�2 ��
−r

+r

e−j�/��2�x/F−�1/u+1/v−1/F�	���2d��2

d�. �4�

Figure 3(a) shows a PSF expected for a focused system

Fig. 2. Simple model of the optical

Fig. 3. Normalized-magnitude PSFs fo
here only diffraction is present. The polychromatic light
s modeled as white light with equal intensity components
n the range 400 to 700 nm. The PSF looks similar to a
aussian. Figure 3(b) shows a PSF for a defocused 16 mm

ens where the camera is focused at 0.464 m and the point
ource is at 0.8 m. The PSF has been flattened out and
ade to look more like a pillbox function.

. IMPROVEMENTS TO EDGE-SPREAD
UNCTION ESTIMATION

n this research the knife-edge technique was employed
nd this section first considers an improvement to Staun-
on’s algorithm [2] that incorporates the effect of nonuni-
orm illumination of the lightbox. Without noise the ESF
ould be differentiated to yield the PSF, but differentiat-
ng a noisy function amplifies the noise. In this paper

odels of the ESF are developed from several PSF models
nd then compared. A regularized numerical differentia-
ion process is proposed.

. Compensation for Nonuniform Illumination
n ideal brightness step changes abruptly from one con-
tant brightness level to the other. Experimentally a
ightbox was employed with a knife-edge to approximate
he step; however, in practice the brightness of each re-
ion was significantly nonuniform. This resulted in erro-
eous PSFs. We propose a new model that retains the
brupt transition, but allows each region to have a linear
hange in intensity as a function of spatial position. As an

with the image plane on the left.

mm, f /4 lens: (a) focused, (b) defocused.
r a 16
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xample, shown by the dotted trace in Fig. 4, both the
right and darker areas of this particular lightbox in-
rease in intensity toward the knife-edge. However other

ig. 4. ESF with a pillbox PSF where �=5 (solid curve) and the
deal step edge (dashed curve).
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inear illumination field conditions can also be modeled by
his scheme. The modified step was given by

s�x� = �m1x + c1�u�x + x0� + �m2x + c2�u�x − x0�, �5�

here u�x� is the unit step function, c1 and c2 are the
rightness of the upper and lower regions, and m1 and m2
re the gradients of the brightness.

. ESF Assuming a Pillbox PSF
or a defocused lens under geometrical optics the PSF is a
illbox and given by

hp�x� =
1

2�
�u�x + �� − u�x − ��	, �6�

here � is the radius of the pillbox, and hence the blur
ircle. The ESF assuming a pillbox PSF and using Eq. (5)
ecomes
gp�x� = 

m1x + c1 x − x0 � − �

1

4�
�− �2c1 + m1�x + x0 − ��	�x − x0 − �� + �x − x0 + ���2c2 + m2�x + x0 + ��	� − � � x − x0 � �,

m2x + c2 � � x − x0

 �7�
here x0 is the location of the transition [22]. An example
f the ESF for a PSF with a blur circle radius �=5 is
hown in Fig. 4 where the original step is shown with a
otted line.
Note that there are two sharp transitions in the result-

ng ESF. A pillbox PSF would result if the lens passed ev-
ry spatial frequency; however, due to diffraction it is
nown that this is not possible and a smoother PSF will
esult.

. ESF Modeled as a Sum of Fermi–Dirac Functions
zannes and Mooney [14] fitted a sum of three Fermi–
irac functions to the ESF. Their technique resulted in a

moothed transition across the edge. In general form the
um of N Fermi–Dirac functions for modeling the ESF is

gFD�x� = �
i=1

N

�
ai

1 + exp�x − bi

ci
�� + d, �8�

here constants ai have been added to normalize the in-
ensity, bi to set the center point, ci to control the gradi-
nt, and d to account for the nonzero brightness of the
owest level. To recover the PSF the ESF must be differ-
ntiated, which is given by [22] as

hFD�x� =
�gFD�x�

�x
= − �

i=1

N 
 ai exp�x − bi

ci
�

ci�1 + exp�x − bi

ci
��2 . �9�
However, a problem with this model is that it cannot
eadily take into account the nonuniform illumination in
way that allows the step and the PSF to be separated.
he PSFs determined experimentally were consequently
onsymmetrical, as shown for example in Fig. 10 below.

. ESF Assuming a Gaussian PSF
he Gaussian PSF is the most frequently assumed model

ound in the literature on defocused lenses, and this is
artly because of its simplicity. A 1D Gaussian with a
tandard deviation � and centered at x= x̄ is then given by

hg�x� =
1

�2��
exp�−

1

2

�x − x̄�2

�2 � . �10�

he ESF assuming a Gaussian PSF and a step-edge with
onuniform illumination is given by [22] as

ig. 5. ESF when the PSF is a Gaussian with �=5 (solid curve)
nd unevenly illuminated ideal step edge (dashed curve).
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gg�x� =
1

2�− �m1 + m2���2

�
exp�−

�x − x̄�2

2�2 �
+ �m1x + c1��1 − erf��x − x̄�

��2 ��
+ �m2x + c2��1 − erf��x − x̄�

��2 ��� , �11�

here erf�·� is the error function, defined as

erf�x� =
2

��
�

0

x

exp�− t2�dt. �12�

f the ideal step with nonuniform illumination as shown
n Fig. 4 is defocused with a Gaussian (�=5, x̄=0) then
he ESF is as shown in Fig. 5.

. ESF Assuming a Generalized Gaussian PSF
he generalized Gaussian function [23] is being proposed
ere as a model of the PSF of a defocused lens. Along with
he mean x̄ and the standard deviation �, the power p of
he function is required. The function can take the form of

Gaussian when the power p=2 and a pillbox when p
�, and thus encompasses both of the frequently used
odels of defocus. The generalized Gaussian is

hG�x� =
p1−1/p

2�	�1

p�
exp�−

1

p

�x − x̄�p

�p � , �13�

here G�·� is the gamma function and �·� represents the
odulus. The term before the exponential ensures the

unction has unit area. Two generalized Gaussian func-

Fig. 6. Generalized Gaussian PSFs w

ig. 7. Ideal steps (dashed curves) and the ESFs (solid curves)
=4, �=5.
ions are presented in Fig. 6, where p=1 (e.g., for a lens in
ocus) and p=4 (defocused).

The ESF, assuming a step edge with nonuniform illu-
ination and a generalized Gaussian PSF, is given by the

onvolution of Eq. (11) with Eq. (13). A closed-form, alge-
raic solution could not be found, so the convolution inte-
ral was evaluated numerically. The ESF is given in [22]
s

gG�x� =
p1−1/p

2�	�1

p�
�

x−x0

�

exp�−
1

p

���p

�p ��m1�x − �� + c1	d�

+
p1−1/p

2�	�1

p�
�

−�

x−x0

exp�−
1

p

���p

�p ��m2�x − �� + c2	d�.

�14�

Using the PSFs shown in Fig. 6 and the ideal step with
onuniform illumination, we obtain the ESFs shown in
ig. 7.

. Regularized Numerical Differentiation
o recover the PSF from the superresolution (ESF) the re-
ponse must be differentiated, and as the data are dis-
rete, finite-difference approximations must be employed.
owever, the ESF is noisy, and both two- and five-point
umerical differentiation were found to give poor results.
hartrand [24] considered the problem of finding the de-
ivative of a function when the underlying function is
oisy and has a discontinuity in the derivative. The solu-
ion proposed uses total-variation regularization, where
he derivative of a function y�x� defined on the closed in-
erval �0,L	 is the minimizer of the function

left) p=1, �=5 and (right) p=4, �=5.

ing generalized Gaussian PSFs with (left) p=1, �=5 and (right)
here (
assum
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Y�u� = 
�
0

L

�u��x��dx +
1

2�0

L ���
0

x

u�z�dz� − y�x��2

dx,

�15�

here u��x� is the first derivative of the function y�x�, and
is a regularization term that weights the first term, a

enalty term, against the second term, the data fidelity
erm.

The total variation suppresses the noise without re-
oving discontinuities in the derivative. The appeal of

his approach is that a pillbox PSF has two finite discon-
inuities and this method ensures that they can be recov-
red and, additionally, that noise suppression is achiev-
ble. The main problem is the choice of the regularization
arameter 
 as it affects the derivative produced.

. EXPERIMENTAL RESULTS, FOCUSED
ND DEFOCUSED SYSTEMS
. PSF Recovery Algorithm

nitially a knife-edge was set up on a lightbox so that it
as angled with a slight offset to a row of pixels in the
PA. Its image was windowed �51�500 pixels� as shown

n Fig. 8. Individual ESFs along the edge therefore con-
ained 51 samples from black to white. This width was
ufficient even for defocused lens measurements.

The sampled ESFs were normalized to remove nonuni-
orm illumination along the direction of the edge. Next
he central brightness positions of the ESFs were esti-
ated using a cubic fit and the ESFs aligned to these.
his alignment resulted in the samples being displaced
elative to each other. The superresolution edge was cre-
ted by averaging the pixel intensities within subpixel
ins to give a ten-times resolution improvement. Having
btained the mean ESF for a given distance, f-number,
nd knife-edge angle it was necessary to find the PSF. The
ethods examined were as follows:

Fig. 8. Example

Fig. 9. Five-point numerical differentiation results for f /2.8, z=
(1) five-point numerical differentiation,
(2) regularized numerical differentiation using Char-

rand’s algorithm [24],
(3) regularized numerical differentiation using Char-

rand’s algorithm followed by a fit of the resulting PSF to
generalized Gaussian function,
(4) fitting the ESF to a sum of Fermi-Dirac functions

14],
(5) fitting the ESF to a defocused step assuming even

llumination and a Gaussian PSF,
(6) fitting the ESF to a defocused step where the illu-
ination is assumed to have a linear dependence on po-

ition and a Gaussian PSF,
(7) fitting the ESF to a defocused step assuming even

llumination and a generalized Gaussian PSF,
(8) fitting the ESF to a defocused step where the illu-
ination is assumed to have a linear dependence on po-

ition and a generalized Gaussian PSF.

n this section results for a 24 mm photographic lens fit-
ed to a Basler A631fc color camera are presented when
he lightbox was 0.725 m from the camera.

. Specific 1D Results
he results from the five-point numerical differentiation

item (1) above] in Fig. 9 show that although the ESF
ooks fairly smooth, the noise is swamping the underlying
SF, thus making this approach unusable without further
rocessing.
When the measured ESF was fitted to a sum of Fermi–

irac functions [item (4) above] as shown in Fig. 10, the
SF appeared to have a good fit; however, the PSF had
either symmetry nor a single peak. These are properties
xpected of a physical PSF.

. Regularized Numerical Differentiation
n order to determine the optimum regularization param-
ter 
, a series of simulations were performed. Both pill-
ox and Gaussian PSFs were used to defocus an ideal

windowed image.

m, angle=0° with ESF shown on the left and PSF on the right.
of the
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tep. Three levels of noise were added with SNRs of 20
high noise), 25, and 30 (low noise) dB, and then the ESF
as differentiated using Chartrand’s algorithm [24]. The

mean squared error) (MSE) was employed as a distance
easure between the actual PSF and the result of the nu-
erical differentiation. The value 
=1000 was optimum

or the SNR=20 dB case, while 
=100 was optimum for
5 and 30 dB. These values were employed in the model-
ng of real ESFs. An example is shown in Fig. 11, where
e have taken the low noise case because it illustrates a
roblem with the method in that it could not take into ac-
ount nonuniform illumination and produced nonsymmet-
ic PSFs.

The remaining fitting methods produced PSFs with less
oise and better symmetry and so were processed further
o give 2D results.

. Edge-Spread Function Fitting Experiments
he ESFs were fitted to the various functions for a range

Function of Depth to Lightbox

Depth to Lightbox, m

0.569 0.647 0.725

34.3 28.3 26.1
9.03 5.58 6.45

7.95 4.99 6.01

64.9 68.2 70.2

55.0 51.1 48.5

90.7 86.0 85.5

72.4 70.8 68.3

id curve) results for f /2.8, z=0.725 m, angle=0° (left), and PSF
Table 1. MSEa Results for f /2.8 as a

ethod 0.414 0.491

ermi–Dirac 25.2 29.2
eneralized
Gaussian
without I.C.b

10.3 7.37

eneralized
Gaussian
with I.C.

7.91 5.92

aussian
without I.C.

64.6 51.1

aussian
with I.C.

47.6 43.4

illbox
without I.C.

130.0 90.9

illbox
with I.C.

102.0 70.3

aMean squared error /10−3.
bIllumination correction.
ig. 10. Actual ESF (dashed curve) and Fermi–Dirac fitted ESF (sol
right).
ig. 11. Regularized numerical differentiation results (right) for
=10 (dashed curve), 
=100 (dash–dotted), and 
=1000 (solid).
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f distances. The results for aperture f /2.8 are displayed
n Table 1. It shows the MSE of the fit as an average for
ll angles tested, which were −80 to +90° in 10° intervals.
he plane in focus was at 0.414 m in front of the lens.
The results show that the error assuming a pillbox PSF

ecreases for increasing defocusing, which was expected
rom the diffraction-based optics theory in Section 3. The

SEs of the fits using generalized Gaussian, Gaussian,
nd pillbox models are lower when the nonuniform illu-
ination was taken into account. The experiment was re-

eated for f-numbers of f /4 and f /5.6. In Table 2, the sum-
arized results for all apertures show that the

eneralized Gaussian with illumination correction has re-
ulted in the lowest MSE, thus giving the best fit to the
ata. The pillbox model produced the worst results with a
SE �14 times greater than that of the generalized

aussian. The MSE of the Gaussian fell almost halfway
etween the generalized Gaussian and the pillbox.

. Results Assuming Gaussian and Generalized Gaussian
SFs
mages of the knife-edge were obtained in 1 mm incre-
ents over a 30 cm depth range for angles of −80 to
90° in 10° increments. Each image gave a single mean
SF and that ESF was fitted assuming both Gaussian
nd generalized Gaussian PSFs as derived in Section 4.
he PSFs were found to be very nearly circularly symmet-
ic, and so the following results are given for the x direc-
ion only. Figure 12 shows the standard deviation of both
he Gaussian and generalized Gaussian as a function of
istance for three different f-numbers tested. The plots
ppear to be smooth and increase monotonically, except
or the Gaussian at the maximum distance tested for
/2.8. Being more robust with increasing depth, the gen-
ralized Gaussian is considered a better model for use
ith DFD [22].

Gaussian PSF and (right) a generalized Gaussian PSF.
Table 2. MSEa Results for All Three Apertures,
from Best to Worst

ethod Average MSE /10−3

eneralized Gaussian
with I.C.b

5.04

eneralized Gaussian
without I.C.

6.93

um of three Fermi–Dirac
functions

26.7

aussian with I.C. 42.5
aussian without I.C. 56.7
illbox with I.C. 72.0
illbox without I.C. 97.6

aMean squared error /10−3.
b

Fig. 12. Standard deviation against depth when fitting (left) a
Fig. 13. Power of the generalized Gaussian against depth.
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The generalized Gaussian PSF has two parameters,
he standard deviation � and the power p. When the
ower as a function of depth was plotted it was found to

Fig. 14. Two-dimensional PSF assuming a Gaussian

Fig. 15. Two-dimensional PSF assuming a generalized Gau

Fig. 16. Two-dimensional PSF assuming a pillbox m
e noisier than � as shown in Fig. 13. d
. Two-Dimensional PSFs
omplete 2D PSFs are presented below assuming pillbox,
aussian, and generalized Gaussian PSF models for two

for z=0.725 m and f /2.8, where x and y are in pixels.

model for z=0.725 m and f /2.8, where x and y are in pixels.

or z=0.725 m and f /2.8, where x and y are in pixels.
ssian
epths corresponding to the farthest and closest positions
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ested. The nonuniform illumination improvement was
sed. Figures 14–16 show the PSFs for a distance z
0.725 m between the camera and the lightbox for an ap-
rture of f /2.8.

The Gaussian PSF model shown in Fig. 14 is for a de-
ocused lens and is clearly circularly symmetric. The fit

Fig. 17. Two-dimensional PSF assuming a Gaussian

Fig. 18. Two-dimensional PSF assuming a generalized Gau

Fig. 19. Two-dimensional PSF assuming a pillbox m
as resulted in a smooth contour plot. The generalized
aussian PSF model shown in Fig. 15 appears to be a

ross between the Gaussian and a pillbox. The fit has re-
ulted in a contour plot that is less smooth than for the
aussian, which is probably due to noise in the ESFs and

ncreased complexity of the function because it has more

for z=0.414 m and f /2.8, where x and y are in pixels.

model for z=0.414 m and f /2.8, where x and y are in pixels.

or z=0.414 m and f /2.8, where x and y are in pixels.



p
F
1

N
h
o
f

G
T
e
i
a

e
i
G
i

6
W
s
t
a
i
E
c

o
n
P

d
i
n
p
P
o
i

g
w
c
G
t
T
t
M
b
a
a
G
t
n
b

R

1

1

1

1

1

1

1

1

M

G
G
G

G

F
c

C. D. Claxton and R. C. Staunton Vol. 25, No. 1 /January 2008 /J. Opt. Soc. Am. A 169
arameters than all the other models. The pillbox model,
ig. 16, has resulted in a reasonably circular PSF. Figures
7–19 show the PSFs for z=0.414 m, the in-focus case.
Note the change of x and y axis scales in Figs. 17–19.

ow all three models have less circular symmetry and
ave a maximum spread at �45° to the x axis. The power
f the generalized Gaussian is less than two, and so the
unction is more pointed than that for the Gaussian.

. Discussion
he goodness of fit of the generalized Gaussian PSF is ex-
mplified by the results of Table 3. Where the nonuniform
llumination model was employed, the fit was between 9
nd 16 times better than for a Gaussian PSF.
The Gaussian PSF has a faster roll-off when the cam-

ra is very defocused compared to that using the general-
zed Gaussian because the power of the generalized
aussian increases with defocus, making it more pillbox

n shape, as highlighted in Fig. 20.

. CONCLUSION
e have reported improvements to an easily performed

uperresolution, but averaged, PSF estimation method
hat enables it to be used for focused and defocused lenses
nd with noise generated within the camera. The method
nvolved the initial accumulation of a superresolution
SF. Previously the calculation of the PSF from the ESF
ould give both noisy and distorted results.

Distortions were attributed to nonuniform illumination
f the knife-edge test object. Where a model of the illumi-
ation could be incorporated into the computation of the
SF, symmetrical functions resulted.
Previously noise in the ESF was amplified when it was

ifferentiated to form the PSF. We researched a regular-
zed numerical differentiation that greatly reduced the
oise. However, changes to the value of the regularization
arameter chosen resulted in varying distortions of the
SF. The method was not constrained by any assumption
f an underlying model of the ESF or PSF, but in practice,
t was found to be outperformed by methods that did.

Table 3. Average MSE/10−3 for Each Method

ethod/Direction

f-number

2.8 4 5.6

aussian/ x direction 31.7 21.9 23.3
aussian/ y direction 46.1 27.3 23.7
eneralized Gaussian/
x direction

2.20 1.67 1.42

eneralized Gaussian/
y direction

4.99 2.44 1.87

ig. 20. Comparison between PSFs for the Gaussian (dashed
urve) and generalized Gaussian (solid curve).
Several widely used models of the PSF were investi-
ated including the pillbox and the Gaussian, together
ith the use of Fermi–Dirac fitting functions in both

ases. A generalized Gaussian that incorporated pillbox,
aussian, and a continuum of models in between through

he choice of a parameter, was also used to model the PSF.
he corresponding models for the ESF were derived from

hese as reported above. The results showed that the
SE of the fit using the generalized Gaussian performed

est across the range of distances and f-numbers tested,
nd that it was 8 times better than the Gaussian model
nd 14 times better than the pillbox model. Pillbox and
aussian models are often assumed in DFD work, and

his research has shown that both are suboptimum. Fi-
ally, 1D PSFs for various knife-edge angles were com-
ined to form 2D PSFs.
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