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Abstract

The development of perceptual user interfaces requires
the solution of a challenging statistical inference problem:
The intentions and actions of multiple individuals must be
inferred from noisy and ambiguous vision and speech data.
We argue that Bayesian network models are an attractive sta-
tistical framework for cue fusion in PUI applications. Bayes
nets combine a natural mechanism for expressing contextual
information with efficient algorithms for learning and infer-
ence. We illustrate these points through the development of a
Bayes net model for detecting when a user is speaking. The
model combines four simple vision sensors: face detection,
skin color, skin texture, and mouth motion. We present some
promising experimental results.

1. Introduction

Perceptual user-interfaces based on vision and speech
present challenging sensing problems in which multiple
sources of information must be combined to infer the user’s
actions and intentions. Statistical inference techniques there-
fore play a critical role in PUI design. This paper addresses
the application of Bayesian network models to the task of de-
tecting whether a user is speaking to the computer. This is a
challenging task which can make use of a variety of sensors.
It is therefore a good testbed for exploring statistical sensor
fusion techniques. Speaker detection is also a key building
block in the design of a conversational interface.

Bayesian networks [14, 8] are a class of probabilis-
tic models which graphically encode the conditional inde-
pendence relationships among a set of random variables.
Bayesian networks are attractive for PUI applications be-
cause they combine a natural mechanism for expressing do-
main knowledge with efficient algorithms for learning and
inference. They have been successfully employed in a wide
range of expert system and decision support applications.
Of particular interest to the PUI community is the Lumi`ere
project [5] at Microsoft, which used Bayesian networks to
model user goals in Windows applications.

In this paper we explore the use of Bayesian networks
for visual cue fusion. We present a network, shown in Fig-
ure 4(c), which combines the outputs of four simple “off-the-
shelf” vision algorithms to detect the presence of a speaker.
The structure of the network encodes the context of the sens-
ing task and knowledge about the operation of the sensors.
The conditional probabilities along the arcs of the network
relate the sensor outputs to the task variables. These proba-
bilities are learned automatically from training data.

The goals of this paper are to illustrate the process of
applying Bayesian networks to PUI applications and to ex-
plore the performance of the Bayesian network approach for
the speaker detection task. We define the speaker detection
problem in Section 2. In Section 3, we present a series of
networks that illustrate the modeling process. We present
experimental results in Section 4.

2. The Speaker Detection Task

We are interested in speaker detection as one of the com-
ponents of a PUI for aSmart Kiosk[15, 21], a free-standing
computer system capable of social interaction with multiple
users. The kiosk uses an animated synthetic face to com-
municate information, and can sense its users with touch-
screens, cameras, and microphones. In this setting we would
like to model and estimate a wide range of user states, from
concrete attributes such as the presence of a user or whether
they are speaking, to more abstract properties such as the
user’s level of interest or frustration.

In the context of our kiosk interface, speaker detection
consists of identifying users who are facing the kiosk dis-
play and talking. In particular, we want to distinguish these
users from others who may be conversing with their neigh-
bors. The public, multi-user nature of the kiosk application
domain makes this detection step a critical precursor to any
speech-based interaction.

Our approach to speaker detection has two attributes.
First, we want to exploit the context of the sensing environ-
ment as directly as possible. The use of context to simplify
image interpretation is an attribute of many computer vision
systems [19]. The main contextual cue which we exploit



is the popular strategy of aligning the camera axis with the
primary viewing direction of the kiosk display. Users who
want to speak to the kiosk must be facing the display and in
close proximity if they expect to be heard. As a result of the
camera placement, these speaking users will generate frontal
face images in which lip and jaw motion is visible. Figure 1
shows a picture of the kiosk configuration.

Another kiosk user-

Figure 1.
The Smart Kiosk

interface which exploits the
alignment of camera and
display axes is described in
[4]. It includes a clever hard-
ware design for physically
integrating the camera and
the display. The KidsRoom
system [7] at the M.I.T. Media
Lab is another good example
of a PUI that exploits context.

The second attribute of our
solution is the use of many
simple sensors in combina-
tion to solve a more complex
task. We employ four visual
cues to perform speaker de-
tection: the CMU face detec-
tor [18], Gaussian skin color
detector [22], skin texture de-
tector, and mouth motion de-
tector. These components
have the advantage of either
being easy to implement or
easy to obtain, but they have
not been explicitly tuned to the

problem of speaker detection. We combine the output of
these sensors with a Bayesian network. We show that the net-
work can infer the frontal orientation of a face even though
we have no explicit pose sensor.

A complete solution to the speaker detection problem
must include a procedure for searching an input video se-
quence over all possible positions, scales, and orientations.
This could be done, for example, through a combination of
heuristics and brute force search [18]. The focus of this paper
is on the design of the detector that would form the basis of
such a search process. Given an image region at a certain size
and position within a certain frame, the goal of the detector
is to compute the probability that a speaker is present.

In this context, each sensor can be viewed as an opera-
tor that takes an input region in a video frame and outputs
a scalar feature. We illustrate the variation in these features
using the sample image sequence shown in Figure 2. We ap-
plied each sensor to two sequences of input regions of length
seven. The first set of regions tracks the face as the pose
varies from left to right across the sequence, as illustrated in
the figure. The resulting feature trajectories are plotted with

Figure 2. Frames 10, 25, and 40 from a sequence
in which a talking head rotates from left to right.
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Figure 3. Plots of the four sensor outputs for
two sequences of image regions. The solid lines
show the response as the pose of the face varies.
The dashed lines show the result of sweeping the
window across a single image.

solid lines in Figure 3. They illustrate the pose dependence
of the sensor outputs.

A second set of regions was obtained by scanning a win-
dow from left to right in image coordinates within a single
frame (number 25 in the input sequence). Region number
four in this sequence contains a frontal face and corresponds
to Figure 2(b). It is identical to region four in the pose se-
quence. The resulting feature trajectories illustrate the re-
sponse of the sensors to the background. They are plotted
with dashed lines in Figure 3. We now briefly describe the
four vision sensors (more details can be found in [16]).

Color-Based Skin Sensor

We employ skin color as a basic cue for detecting a visible
face in the input window, as it is largely unaffected by the
facial pose. Given skin color measurements obtained dur-
ing a training phase, we fit a single gaussian color model
as described in [22]. The feature is the average of the log-
likelihood over the input region. The solid line in Figure 3(a)
shows the stability of the skin color feature as a function of



the pose of the face. The dashed line shows a gradual degra-
dation as the input region is contaminated with background
pixels.

Texture-Based Skin Sensor

It is well-known that many objects, such as walls, are similar
in color to skin. We employ a texture feature to help dis-
criminate regions containing faces from regions containing
either very smooth patterns such as walls or highly textured
patterns such as foliage. A simple correlation ratio

T =
E [g(x; y) � g(x+ �; y)]

E [g2(x; y)]

defines the feature, where� is set to one twelfth the width of
the region of interest — on the order of facial feature sizes,
and whereg denotes the green channel in the input color im-
age. Variation in this feature is illustrated in Figure 3(b).

Frontal Face Sensor

The CMU face detector [18] uses a neural network (NN)
architecture to search for frontal, upright faces in images.
Since we are given a specific image position and scale to
evaluate, we employ the verification network from the CMU
system. This network is very sensitive to small position er-
rors, so we search over a small region around the desired
location and return the highest score.

The output of this detector is plotted in Figure 3(c). The
solid curve shows the continuous output of the NN as the
pose of the face varies. The output is highly saturated and
orientation-sensitive. The feature is equally sensitive to po-
sition within an image (the dashed curve) and falls off rapidly
around the face (region 4).

Mouth Motion Sensor

This sensor uses the motion energy in the mouth region of
a stabilized image sequence to measure chin and lip move-
ment. A weighting mask is used to identify mouth and non-
mouth pixels inside the target region. Affine tracking of the
nonmouth pixels is used to cancel small face motions. The
residual error in the mouth region averaged over five frames
is then used as the feature. It is normalized by dividing by the
residual error over the remainder of the face. This is an ap-
proximation to the optical flow approach to lip motion anal-
ysis proposed in [11].

In the absence of an accurate segmentation of the face pix-
els, the sensor is sensitive to significant head rotation. As
the face pose approaches a profile view, residuals around the
occluding contour increase, biasing the sensor. This effect is
apparent in the “jaggedness” of the solid curve in Figure 3(d).

Of the four sensors described above, only the face detec-
tor could be applied to unrestricted video input with some

chance of success. Furthermore, none of these sensors can
directly measure the presence of a speaking user. It is im-
portant to note that we selected these particular sensing al-
gorithms on the basis of their availability, simplicity, and
relevance to the task. Our claim is not that they are opti-
mal. Rather, our concern is to explore Bayesian networks as
a principled method for combining such simple features in
solving PUI tasks.

3. Bayesian Networks for Speaker Detection

A Bayesian network [14, 8] is a directed acyclic graph
in which nodes represent random variables, and the absence
of arcs represents conditional independence in the following
formal sense: a node is independent of its non-descendants
given its parents. Informally, we can think of a node as being
“caused” by its parents. Figure 4(a) gives an example of a
simple Bayes net which models the presence of a face in the
input region.

Given a Bayes net graph, we can factor the joint distribu-
tion over all of the variables into the product of local terms:
Pr(X1; : : : ; Xn) =

Q
i
Pr(XijPa (Xi)), wherePa (Xi) are

the parents of nodeXi, andPr(XijPa (Xi)) is the condi-
tional distribution ofXi given its parents. If all of the nodes
are discrete (as we assume throughout this paper), the con-
ditional distributions can be represented as conditional prob-
ability tables, called CPTs. (See Table 2 for an example.)
However, we can also allow the nodes to be continuous and
employ Gaussians or conditional Gaussians. Both CPTs and
Gaussian parameters can be learned from training data using
EM. See [12] for more details.

There are two computational tasks that must be performed
in using Bayes nets as classifiers. After the network topology
has been specified, the first task is to obtain the local CPT for
each variable conditioned on its parent(s). Once the CPTs
have been specified (either through learning or from expert
knowledge), the remaining task is inference, i.e., computing
the probability of one set of nodes (the query nodes) given
another set of nodes (the evidence nodes). In our example the
evidence nodes are the discretized outputs of the four vision
sensors and the query node is the probability of a detected
speaker. See [16] for more details on the standard Bayes net
algorithms.

In the remainder of this section we explore the represen-
tational power of Bayes nets through a series of examples
that culminate in the speaker detector network. The first ex-
ample is the naive Bayesian classifier of Figure 4(a). The
leaves represent observable features (the outputs of our sen-
sors, suitably discretized), and the root node represents an
unobserved variable,visible, which has value 1 if a face is
visible in the input region, and 0 otherwise. We are interested
in computingPr(V jS; T;N), whereV representsvisible, S
represents theskin colorsensor,T represents theskin texture
sensor, andN represents theNN facesensor. This quantity
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Figure 4. (a) A naive Bayes classi�er. (b) Bayes net for visible/frontal face detection. Without the dotted
arc, the graph is a polytree. (c) The speaker detection Bayes net. The leaves represent the output of
sensors, the other nodes represent hidden states.

can be used in a decision rule, such as inferring that a face is
present wheneverPr(V = 1) > Pr(V = 0).

The network of Figure 4(a) is a poor model for a visible
face because it fails to take into account the fact that theNN
facesensor can only detect frontal faces. This missing con-
textual knowledge can easily be incorporated into our net-
work model by means of an additional hidden variableF ,
for frontal. F takes on the values 1 for frontal faces, 0 for
non-frontal faces, and 2 for not-applicable (in the case where
V = 0.) We can build a separate naive Bayes classifier for
F , with just one child,N . When we combine the two classi-
fiers into a single network, we end up with thepolytreestruc-
ture shown in Figure 4(b) (where the dotted edge is absent).
A polytree is a directed graph whose underlying undirected
graph is a tree, i.e., an acyclic graph. Intuitively, we can
think of a polytree as multiple directed trees grafted together
in such a way as to not introduce any undirected cycles.

Polytrees are more powerful than naive Bayes models,
since variables such asNN facecan have multiple parents.
However, the fact thatfrontal depends uponvisible (since
Pr(F = 2jV = 0) = 1:0) cannot be encoded in a polytree.
We can model this fact by adding an extra arc, shown by a
dotted line in Figure 4(b). This results in a graph with an
undirected cycle, which we will callG.

NetworkG in Figure 4(b) has some interesting properties.
For example, consider the case whereN = 0, meaning that
the neural network has not detected a face, butS = 1 and
T = 1, meaning that the skin and texture sensors have de-
tected a face. In the naive Bayes case of network (a), these
contradictory sensor readings would have the effect of reduc-
ing Pr(V = 1). In G, however, the fact thatN = 0 can be
explained awayby the fact thatF = 0 despite the fact that
V = 1, since we know that the neural network cannot detect
non-frontal faces. Hence we not only increase the classifica-
tion accuracy onV , but we also infer the value ofF without
directly measuring it. The phenomena of explaining away is
a key property of Bayes net models for cue fusion.

In Figure 4(c), we have introduced an additional measure-
ment variablemouth motion(M ) and hidden variablespeak-
ing (S) to obtain the complete vision-based speaker detection

network.S is the desired output, the probability of a speaker
being present in the input region. Note that the arcs con-
nectingspeakingto visibleandfrontal encode the contextual
knowledge about camera placement described in Section 2.

Notice also that the networkG from Figure 4(b) can be
viewed as being “plugged in” as a module into the larger
speaker detection network of (c). This is because thevisible
andfrontal nodes separate (in a certain technical sense) all of
the nodes in graphG from the additional nodes in the new
speaker detection graph. The idea of reusing Bayes net com-
ponents by plugging them into larger networks is formalized
in [9] under the name object-oriented Bayes nets.

4. Experimental Results

We recorded 80 five-frame video clips of faces, and la-
beled the position (bounding box) and pose (frontal, profile,
or not applicable) of the face in the first frame. We also ran-
domly sampled 80 non-face regions from the backgrounds
of these clips. We applied each of the four sensors to these
bounding boxes. The color, texture, and neural network sen-
sors were applied to the first frame in each clip, while the
mouth motion sensor employed all five frames. We dis-
cretized the results by hand, using two bins for the skin de-
tector, two for the neural network detector, and three for the
texture detector. We used half of our data for training and
half for testing. When training, we presented the values of
all the nodes to the network. When testing, we presented the
values of the sensors, and computed the marginal probabili-
ties of the hidden nodes. We conducted two sets experiments
corresponding to the networks of Figure 4(b) and (c).

4.1. Face Detection Experiment

The first set of experiments explored the ability of the
polytree and general (G) networks in Figure 4(b) to estimate
V andF . We declaredV = 1 if Pr(V = 1) > Pr(V = 0).
Equivalently, we declaredF = argmaxPr(F ). An error



Table (a) Train Test Table (b) Train Test
Polytree 72 75 Frontal 100 94
General 95 94 Nonfrontal 93 89

Nonface 94 98

Table 1. (a) Percentage of cases in which both
V and F are estimated correctly using the mod-
els of Figure 4(b). (b) Percentage of correct
estimates of S by the network of Figure 4(c) for
three sets of video clips containing frontal faces,
nonfrontal faces, and no faces.

V F Pr(N = 0) Pr(N = 1)
0 0 0.5 0.5
1 0 0.0055 0.9945
0 1 0.5 0.5
1 1 0.8377 0.1623
0 2 0.9980 0.0020
1 2 0.5 0.5

Table 2. The learned CPT for the neural net-
work detector node in network G. When the face
is visible and frontal (second row), the proba-
bility that the neural network will detect it is
0.9945; but when the face is visible and non-
frontal (fourth row), the probability it will de-
tect it is only 0.1623. Rows with 0.5 in them
correspond to values of the parent nodes that
were never seen in the training data (because
they are impossible).

was counted if eitherV or F were incorrect. The results are
shown in Table 1(a).

It is clear that the general model (network G) performs
better than the polytree model. To understand why, we ex-
amined the CPT for theNN facenode, shown in Table 2. We
can see that it has learned that the neural network is good at
detecting frontal faces, but not good at detecting non-frontal
faces; the general model (but not the polytree model) can ex-
ploit this to infer pose, as we discussed earlier.

In this experiment, all of the errors were due to incor-
rectly estimatingF for images whereV = 1. This reflects
the inherent ambiguity in the concept of “frontal pose”. The
threshold on the pose angle used by the human labeler is
likely to be inconsistent with that implicitly defined by the
neural network, resulting in errors inF . This explains why
the performance on the test set can exceed the performance
on the training set (as in the polytree case).

4.2. Speaker Detection Experiment

In the second experiment, we evaluated the speaker de-
tection network of Figure 4(c) using three sets of test data.
The first set contained video clips with visible,frontal faces
equally divided between speaking and nonspeaking. The sec-
ond,nonfrontalset contained faces at a variety of nonfrontal
poses. The finalnonfaceset consisted of clips that did not
contain a face. As before, we computedS = argmaxPr(S)
in scoring the network output. The results for the training
and testing data are given in Table 1(b).

In 90 % of the test cases, errors in estimatingS seemed
to result from estimatingF incorrectly (i.e.,F was incorrect
and the mouth feature supported speaking). This suggests
that themouth motionsensor was fairly reliable for frontal
faces. The controlled lighting and lack of background mo-
tion in our experiments undoubtedly contributed to this suc-
cess. We plan to validate these network designs futher under
more challenging experimental conditions, including natural
lighting and moving background clutter.

5. Previous Work

While Bayes net models are not yet in wide-spread use
within the human sensing and computer vision communi-
ties, there is a growing body of work on their application
to object recognition [10], scene surveillance [2], video anal-
ysis [20, 6], and selective perception [17]. Much of this ear-
lier work relies upon expert knowledge to instantiate network
parameters. In contrast, we have explored the ability to learn
network parameters from training data. Learning is a key
step in fusing sensor outputs at the data level.

While our focus has been on cue fusion in static images,
there has been some interesting work on dynamic cue fusion
for PUI problems. One example is the SERVP architecture of
Coutaz et. al. [3]. Another is the coupled HMM models used
by Brand et. al. [1]. See [16] for a more detailed discussion
of the literature.

6. Discussion

We have demonstrated a general approach to solving per-
ceptual user-interface tasks by fusing simple sensing algo-
rithms using Bayesian networks. The primary advantage of
Bayes nets is the ease with which contextual knowledge can
be encoded. Context is a particularly powerful cue in PUI
applications since it can be controlled and reinforced in the
design of the interface.

In the speaker detection task which was the focus of
this paper we exploited two contextual cues: the fact that
a speaker’s face image will be frontal, and the fact that the
CMU face detector can only detect frontal faces. The result-
ing network demonstrated the ability to estimate whether a



presented face was frontal, in spite of the fact that there was
no sensor for face pose.

A second advantage of Bayesian networks in cue fusion
applications is the existence of well-behaved learning al-
gorithms for inferring the relationship between sensors and
task variables. Bayes nets can represent complex probabil-
ity models, but their learning rules are simple closed-form
expressions, given a fully-labeled data set.

Our experiments on real data using the face and speaker
detection networks of Figure 4(b) and (c) demonstrate the
promise of Bayes net models for PUI applications. It would
be premature to draw strong conclusions about the success
of these particular network architectures from our current ex-
periments. We plan to validate our design choices on a larger
subject population under more challenging illumination and
background conditions.

The approach of combining simple sensors with contex-
tual cues to solve a PUI task is an alternative to approaches
which build complex sensors for large numbers of user states.
For example, speaker detection could also be performed us-
ing the output of a real-time head and lip tracking system
such as LAFTER [13]. For the task of speaker detection, the
primary advantage of the sensor fusion approach is its sim-
plicity of implementation. It is quite likely that greater accu-
racy could be obtained with a more complex and specialized
sensor.

However, as we move from sensing well-defined at-
tributes like speech production to more abstract quantities
such as the user’s interest level, it becomes increasingly diffi-
cult to imagine designing a single highly specialized sensor.
We believe that the full power of the Bayes net approach will
become apparent in this limit.

In future work we plan to add speech sensing to the
speaker detection network and experiment with multimodal
inference. We also plan to explore the use of dynamic Bayes
nets to capture temporal attributes of users. Going beyond
low-level cue fusion, we would like to use Bayes nets as
a framework for integrating high-level reasoning with low-
level sensing. With a suitable utility model it should be pos-
sible to close the loop between sensing and action in a sound,
decision-theoretic manner [5].

We would like to thank Henry Rowley for his help with
the CMU face detector. We would also like to thank the re-
viewers for their detailed comments.
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