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ABSTRACT

This paper presents a fast image alignment algorithm based on connected component labeling and
improved moment invariants resulting in rotation, scale and translation invariant. This algorithm consists of
two phases: 1) the training phase, and 2) the matching phase. In training phase, the algorithm firstly finds the
moment invariants of selected shape in the reference image by using the proposed connected component
labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an
efficient pattern matching, used the minimum distance classifier, between the selected shape in training
phase and the candidate-shapes in the inspected image is applied in matching phase. Experimental results
with LCD drive IC, print circuit board (PCB) and cellular phone images first show the proposed
component-labeling algorithm is superior to the other three algorithms in computation loading. And the
accurate and high speed alignment results reveal that the proposed alignment algorithms are computing
efficient and invariant to rotation, scale and translation. Therefore, the proposed connected component
labeling and image alignment algorithm could be the useful preprocessing tools in automated optical

inspection (AOI).

Keywords: Connected component labeling, Contour tracing technique, Improved moment invariants,
Minimum distance classifier.



1. INTRODUCTION

Image alignment is a fundamental technique for many applications of machine vision and image
processing, including image search, object recognition, pose estimation, industrial inspection, target tracking,
etc. Image alignment with a two-dimensional (2-D) rigid transformation is usually applied to industrial
inspection under a well-controlled environment. The change in rotation of the pattern in the image is one of
the most difficult conditions; therefore, the rotation-invariant matching schemes have been required in many
industries of inspection. In addition, some vision applications need to be scale-invariant matched, so the
image alignment algorithm should be able to accommodate variations in different rotation and scale
conditions.

Image alignment technique generally is divided into two major categories, area-based (or
intensity-based) and feature-based (or geometry-based) methods [1]. Area-based method sometimes is called
correlation-like or template matching method; has been very popular from the past due to the feature of basic
ideas. Firstly, the small reference template is applied in a large scene image by sliding the template window
in a pixel-by-pixel basis and the normalized cross correlation (NCC) is computed between the template and
the scene image. Then, the maximum values or peaks of the computed correlation values indicate the
matches between a template and sub-images in the scene. The NCC is most often used to suit the registration
of images which only differs by a translation partially. If images are deformed by more complex
transformations, the template window can not cover the same parts of the scene in the reference and sensed
images. Therefore, several researchers proposed to modify the NCC for the complex transformations of
images. In order to make the match invariant to rotation, a ring-projection transformation was proposed [2].
It transforms a two-dimensional (2D) gray-level image into a rotation-invariant representation in the 1D
ring-projection space. Tsai and Chiang [3] further proposed the ring-projection to represent a target pattern in
the wavelet decomposed detail sub-image, used only the pixels with high wavelet coefficients at lower
resolution level to compute the NCC between two compare patterns. In addition, Choi and Kim [4] presented
a two-stage image alignment method that first finds candidates by comparing the vector sums of
ring-projection, and then these candidates are further matched based on the rotationally invariant Zernike
moments.

In the feature-based method, Huttenlocher et al. [5,6] applied the directed Hausdorff distance to develop
efficient algorithms for image alignment. Kown et al. [7] proposed a robust hierarchical Hausdorff distance
to compare edge maps in a multi-level pyramid structure. In addition, Chen et al. [8] used the Hausdorff
distance for image alignment in PCB inspection system. Nevertheless, the above algorithms made the high
computational cost when the image alignment involves rotation and scale compensation.

Connected component labeling is a very important preprocessing of image alignment, and many
algorithms of connected component labeling have been proposed. Suzuki et al [9] used a one-dimensional
table that is able to memorize label equivalences, is used for uniting equivalent labels successively during the
operations in forward and backward raster directions. Chang et al [10] further presented the one-pass
component-labeling algorithm which is to use a contour tracing technique to detect the external contour and
possible internal contours of each component. A general approach to handle the label equivalence
information is to use Union-Find algorithm with pointer based rooted trees [11], and then Wu et al. [12] has
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used an array instead of the pointer based rooted trees to speed the connected component labeling algorithm.
However, the execution time of the above conventional algorithms can not be applied for the real-time
applications. The component contour is often a useful resource for identifying objects, therefore, we propose
a new algorithm for connected component labeling on binary images, and identify objects from improved
moment invariants [ 13] which are derived from object contours.

In this paper, a fast image alignment technique which combines the connected component labeling and
improved moment invariants techniques is developed for industry inspection. This algorithm consists of two
phases: 1) the training phase, and 2) the matching phase. In training phase, the algorithm firstly finds the
moment invariants of selected shape in the reference image by using the proposed connected component
labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an
efficient pattern matching, used the minimum distance classifier, between the selected shape in training
phase and the candidate-shapes in the inspected image is applied in matching phase. Experimental results
show the proposed algorithm under a wide variation of rotation and scale is robust and computing efficient.

Therefore, this could be a useful preprocessing tool in AOL

2. PROPOSED CONNECTED COMPONENT
LABELING AND IMPROVED MOMENT INVARIANTS

The image alignment algorithm, proposed in this paper, includes three techniques: 1) proposed connected

component labeling, 2) contour tracing technique, and 3) improved moment invariants.

2.1 Proposed Connected Component Labeling

A set of pixels in which each pixel is connected to all other pixels is called a connected component. The
proposed connected component labeling algorithm finds all connected components in a binary image and
assigns a unique label in the same component. The connected components are determined to find the object
properties and locations. In this algorithm, we scan a binary image from left to right and from top to bottom
per each line. First of all, a typical binary image shown in Fig. 1 is demonstrated the overview of this
algorithm. Conceptually, we can divide the operations into three major steps that are illustrated in Fig. 1.

The details of the three major steps are given below.

Step 1-Obtain RLE:
The RLE is made by the use of spatial coherence in binary images, and we use the start and end position

of runs each row to represent the image. The RLE structure is listed as following:

Xs  :x-coordinate of the start position of a run
Xe  :x-coordinate of the end position of a run.
Y : y-coordinate of a run.

Next :index of the next run.
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Fig. 1. The proposed connected component labeling for binary image.

Step 2-Connectivity:

From step 1, we use RLE to carry out segment-wise instead of pixel-wise, and only two rows of the
image are required in the connectivity step. Note that connectivity is an equivalence relation. For instance,
from Fig. 1(a) to 1(b), the connectivity detecting and the connectivity RLE table are changed each row. If the
8" run in the 5™ row of the binary image is connected to the runs of the connectivity detecting table (Fig. 2),

then union-find step must be executed.

Step 3-Union Find:

In this step, two connected blobs are successively merged into a whole blob tree, where the blob tree is a
union of blobs. A typical blob tree is shown in Fig. 3. A function Union is used to merge the connected blobs.
In Fig. 4(a), blob 1 is merged into blob 0, i.e. blob 0 becomes the parent of blob 1. Hence, the flag of blob 1
is set as false which means blob 1 is not a root of the blob tree. Following the above process, we set the next
of the run 6 as 1 and the next of the run 7 as 8, which means blob 0 includes the runs of blob 1, and then the

last of blob 0 is set as 8.
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Fig. 3. A blob tree with six blobs.

A function FIND is used to identify the root of the blob tree. When a blob or blob tree connected to the
other node, we use FIND to locate the root node of the connected blob tree. The label of this root node will
represent the final blob label of the new whole blob tree. Therefore, the different blob trees will result in the
same blob label when the corresponding nodes in different blob trees are connected together.

The Union Find processes are demonstrated in Fig. 5 with two blob trees, in which the node 4 and node
10 are connected together. Figure 5(a) shows the path of the FIND process, and the Union process is used to
merge the node 6 into node 0. The final result after the Union Find processes is shown in Fig. 5(b).

From above three steps, our algorithm is shown as a one-pass algorithm for labeling arbitrary connected
components. In addition, we easily find that this algorithm has the following two good features.

(1) Easy for post processing

All of the pixel points in each blob can be traced out from the root of the blob tree. Therefore, when we

need to do some processing on one blob, only the pixel points in this blob will be checked. We do not need to

check the background points that belong to any other blobs.

(2) Labeling gray image directly
The input image can just be a gray image in our algorithm, but a binary image is needed in some

traditional algorithms. This feature can save the time consumed for image binarization.
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2.2 Contour Tracing Technique[10]

As shown in Fig. 6, the goal of the contour tracing technique applied in this paper is to find an external
contour at a given point, say F. We first execute a procedure called Tracer at point F. Tracer will output the
contour point following F. Let this point be §, and then we continue to execute Tracer to find the contour
point following S and so on, until the following two conditions hold: 1) Tracer outputs F and 2) the contour
point following F is S. The procedure stops only when both conditions hold. In Fig. 6, when F is the starting
point and § is the next contour point, the path traced by Tracer is FSTSFDEDF.
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"

Fig. 6. Tracing the contour of a component.
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Fig. 7. (a) The neighboring points of P are indexed from O to 7. (b) If the previous contour point lies at 5, the

next search direction is set on 7.

For a given contour point P, the goal of Tracer is to find among P’s eight neighboring points. In Fig. 7(a),
the position of each neighboring point of P is assigned to an index. The search proceeds in a clockwise
direction from the initial position that is determined in the following way.

In general, when P is not the starting point of a contour, its initial search position is set as d+2(mod 8),
where d is the position of the previous contour point. For example, if the path traced by Tracer is FS in Fig. 6,
i.e., the previous contour point exists and lies at position 5(Fig. 7(b)), then the initial position is set as index 7,

the target path FST is found after the tracing process, i.e., the next is index 1.

2.3 Improved Moment Invariants[13]

The traditional moment invariants, computed based on the information provided by both the shape
boundary and its interior region, have been frequently used as feature for shape recognition. To reduce the
computation of the traditional moment invariants, the improved moment invariants are computed using the
shape boundary only.

Define the (p, q)"™ modified moment as

m, :jx”yqu, for p,q=0,1,2,3,.. (D

C

wherej is a line integral along the curve C, ds = Jdx’ +aly2 , the modified central moments can be

C

similarly defined as

,qu=j(x—;c)P(y—§)qu,Where;:%’ §:J. .
‘ Moo My
Eq. (2) can be represented as a discrete form
. —.4
My = Z(x—x)”(y—y) ) 3

(x,y)eC



It can be easily verified that the central moments up to the order p + g <3 could be computed as

Hoo = My My =ny — ymy,
- —
My, =0, My =My —3xmy, +2x my,
— - —
Hy, =0, Hyy =my, —2ymy, —xmy, +2y my, 4)

- — —2
Moy =My — XMy, My =My — 20my — ymy, +2x my,

— — —
Moy =My, — Yy, Moy = Mgy —3ymeg, +2y my,.

The central moments are invariant to translation, and can also be normalized to a scaling change by the

following formula.

7> where}/zp;q+1, forp+g=2,3,.... 5)

The quantities in equation (5) are called normalized central moments. The following moment invariants

were frequently used as features of shape recognition.

¢1 =T 1025 ¢2 :(7720_7702)2+477121

(6)
¢3 = (7730 _37712)2 + (7703 - 37721)2’ ¢4 = (7730 +7712)2 + (7703 "'7721)2

The quantities(bi, 1<i<4, were shown to invariant to scaling, translation, and rotation. The modified
moment invariants are computed based on the shape boundary only, therefore, we call them improved

moment invariants.

3. FAST IMAGE ALIGNMENT

In this section, a fast image alignment algorithm, integrated connected component labeling algorithm
with improved moment invariants, is proposed. The connected component labeling combines run length
encoding (RLE) and array-based Union Find algorithm to increase the computational efficiency. After the
labeling process, the boundary of object is detected using a contour tracing technique. The improved moment
invariants, based on the shape boundary, are presented to detect the specified object. The improved moment
invariants technique reduces the computation loading because it only uses the boundary information of
object and it is also invariant to scaling, translation, and rotation. The proposed fast image alignment
algorithm can divided into training phase and matching phase. Figure 8 shows the procedures of these two

phases.
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Fig. 8. The fast image alignment algorithm.

3.1 Training Phase

The training phase is based on the reference image, and procedures of training phase are as follows.

Stepl:
Step2:
Step3:

Step4:

Step3:

Selecting two regions of interest (ROI) in reference image.

Selecting an appropriate threshold for the different inspection conditions.

The proposed connected component labeling is used to label the objects in above ROIs, and the
labeled object areas are output for the matching phase.

After labeling process, the contour of the specified object is traced by using the contour tracing

technique.

r

Here, the four improved moment invariants @ (m) (i=1,2,3,4;m=1,2) for the two training

patterns detected in the reference image are calculated. Finally, the improved moment invariants

of selected shapes are output for the matching phase.

3.2 Matching Phase

The procedures of the matching phase based on inspected image are as follows.

Stepl:

Step2:

The proposed connected component labeling is directly used to label the objects. A predetermined
threshold is embedded to transfer the gray level image into binary image during the labeling
process in order to save the time consumed for image binarization.

The contours of the labeling objects are traced under the area limitation, and then the improved

moment invariants of the contours are computed.



Step3:

Step4:

The minimum distance classification is evaluated for shape localization using the improved
moment invariants. Let @’ (n) (i=1,2,3,4;n=1,2,---,k) denote the four moment invariants

of the k objects detected in the inspected image. Then, the normalized distance of invariant-moment

between the referenced objects m and inspected objects 7 is depicted as

e -9 () ’
d, = Z[ prr xloo] (7

The result of Eq. (7) is a 2k distance matrix in 4-D feature space, which represents the similarity
relationship between the objects m and n. Using the principle of minimum distance classifier, the
target object is selected when the smallest distance is met between the training patterns and the
shapes in the inspected image. In this paper, two optimal objects are selected in the inspection
image in order to estimate the orientation of image.

Finally, the orientation angle between the reference and inspected image is computed. Figure 9
represents the geometric relationship between reference image 1 and inspected image 2, where
shape 1 and 2 are the corresponding left and right targets. The vectors between the geometric

centers of left and right targets in reference and inspected images are depicted as

Plz(le_le’le_ylL):(Axl’Ayl) ()

PZZ(XZR_XZL’yZR_yZL):(AXZ’AyZ) 9

, respectively. And X, X,,, ¥,z y;, are the horizontal and vertical coordinates of reference image;

Xyg> Xor> Yog» Yo, are the horizontal and vertical coordinates of inspected image. Then, the

orientation angle between the reference and inspected image is computed as

O=cos™! Q
7|
= cos™ Ax - Av, +4y, -4y, (10)
JAx Y +(ay, ) (Ax, ) +(Ay, )

10



snope

\ -

n— (X:m Viw

i\ — (X157 18)

e

y

Fig. 9. The orientation estimation procedure.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results contain two parts. In the first part, the proposed component-labeling algorithm
is compared with the other three algorithms which are a recently published algorithm [10] (Chang’s
algorithm) and two commercial software, Mil and eVision. In the second part, the proposed image alignment
algorithm is compared with the Easyfind tool of eVision. The test platform is a PC equipped with P4-2.8G
CPU and 1G MB RAM.

4.1 Testing on Connected Component Labeling Algorithm

In the experiments, the LCD driver IC images with 2 different resolutions (1000x1000 and 1360x1024)
were used, shown in Fig. 10. Table 1 indicates the comparison datum in detail and Fig. 11 shows the
performances between our proposed algorithm and the other algorithms. In the table and figure, the density
means the ratio of labeled objects to the full image with number of pixel. No matter what image resolution is,
our algorithm is more efficient than the other three algorithms. Moreover, Fig. 12 shows the execution time

is almost same in both our proposed algorithm and Mil 5.12 when the image size increased.

(b)
Fig. 10. (a) The LCD driver IC image (b) The driver IC image after image binarization.
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Table 1. Performance of the four algorithms.

P4-28GHz RAM 1G Image Siz__ 1k*1k Execute Time (ms)
Density New method Evision 2006 il Chang method
07% 4.789 2.5 348 15944
17% 536 3211 393 16.286
45% 6423 4351 543 18791
90% 6511 3457 593 21783
13.9% 7859 8066 706 23726
19.1% 8.148 9368 204 26.231
25.0% 2.011 12.034 905 28623
31.0% 10309 16.543 1024 31.732
3830 10631 1] 1098 34.048
46.6% 10,692 99 g 33.561
555% 10971 [ 1206 32656
64.6% 10.754 o6 12 32.469
745% 9.701 155 1002 30515
83500 7798 49 739 25872
89.7% 5415 7349 43 19661
91.3% 4817 5281 3.5 17374
P4 230Hz RAM 1G Image 3iz 1360*1024 Execute Time (ms)
Density New meihod Evision 2006 il Chang method
14% 9502 g417 982 20358
11.4% 12053 19 13 34883
205% 16656 37 2014 44911
305% 18476 g2 2029 51.408
39.7% 16942 110 1501 31393
49.4% 10.149 13 7.59 37373
60 4% 11944 26 10.24 37.319
70.6% 9855 15 .16 35817
80.5% 10912 68 1155 36.426
89.7% 12.155 100 1047 38.239
95.5% 6331 2455 447 23.112
P4-2.8GHz RAM 1GMB Image Size : 1000 * 1000 P4-2.8GHz RAM IGMB  Image Size : 1360 * 1024
180 120
-+ 4 -~ Our method
160 (| - -¢ - Our method —=—eVision 2006 /\
/\ 100 H )
140 H —=— eVision 2006 oo MilsLz \ \
@ \ —>— Chang's method
E i H - Mils12 \
z \ g 0f
< 100 H —*— Chang's method <
ANV
g 80 w 2 60
Z Y \
60 &
40 - 40 F
4*‘*7'0-?*-‘*-0‘-‘*-&‘..-‘,. 0 20 -
do

Density

44%

11.4%

20.5% 30.5% 39.7% 494% 604% 70.6% 80.5% 89.7% 100.0%

Density

(a)

(b)

Fig. 11. Performances of the four algorithms for the (a) 1000x1000 (b) 1360x1024 driver IC images .
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10001000 1073 6 1.1z 44911
1360%1024 1258 85 1163 51,408

Fig. 12. Performances of the four algorithms for the different image sizes.
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4.2 Fast Image Alignment Experiment

In fast image alignment experiment, the simulated and real images are prepared to verify the alignment
algorithm. The simulated alignment experiments demonstrate the efficiency of the proposed image alignment
algorithm under different simulated translation and rotation conditions. Then, the real images acquired from
CCD camera with translation and rotation variations are prepared to validate the robustness of the proposed
algorithm. The proposed image alignment algorithm is compared with the Easyfind tool of eVision in the
above experiments.

4.2.1 The simulated alignment experiment

The synthesized images with different translation and rotation are used to verify the proposed image
alignment algorithm. There are three original images, depicted in Fig. 13, with different image size 768x576,
1024x768 and 1360x1024, respectively. For each dataset, we simulate 13 images with different translation

and rotation values from the original image. Table 2 shows that the proposed algorithm gets more accurate

alignment errors and the faster computing time than Easyfind under different image size.

Fig. 13. The three images with different image size. (a) 768x576. (b) 1024x768. (c) 1360x1024.

Table 2. Performance of the simulated image alignment algorithms.

P428 GHz BAM LG Image Size 7T68*576
Proposed Method Evision-Easyfind
Rotation angle Error angle( °) Execute time(ms) Error angle( °) Execuie time(ms)
1 0.005 1.81 0221 777
2 0.011 3.65 0.061 £33
38 0.012 342 0.oos 853
4 0.015 3.88 0061 833
5° 0.023 3.63 0.042 82
6° 0.002 3.68 o041 g
i 0.0l 3.62 onst 8
8 0.011 3.58 0046 82
e 0.015 3.68 0032 83
10° 0.03 3.63 001 8
153 0.017 3.69 ooog 7
20° 0.033 KE->] 0049 724
5° 0.012 16 005 6.5
Average 0.01562 36492 0.05292 7.02369
F42%GHz BAM1G Image Size 1024*768  P4-28 GHz BAM1G Image Size 1360%1024
Proposed Method Evision-Easyfind Proposed Method EvisionEasyfind
Botation angle Error “y Execute time(ms) Error angle( “) Execute time(ms) Rotation angle Error angle( *) Execute time(ms) Error angle( “) Execute time(ms)
b 0.026 6.18 0102 1 ¥ 0.046 112 0.168 0
2 0.021 6.54 0035 11 2° 0.022 1133 008 18
37 0.024 642 no1e 1 B2 0.004 1125 o0n3 19
4° 0.035 6.33 o009 1 42 0.042 1164 ooo 20
57 0.033 6.53 0.06 11 5 1] 1127 0.045 19
a° 0.038 6.52 ooz 1 a° 0015 114 0.008 19
i 0.028 6.51 0051 12 T 0.015 11.24 0039 0
g° 0.04 6.68 o013 1 a° n.o01g 114 0004 13
9° 0.037 648 0043 1 9° 0012 1128 0017 19
1 0.016 6.51 0ns 11 10* 0.017 1.79 001 20
15% 0.034 6.51 008t 11 15* 0.008 114 0037 12
ik 0.026 6.1 0.096 11 20° 0015 1151 0048 17
255 0.029 6.26 0053 12 25° 0.017 1157 0071 20
Avwerage 0.02977 6.43335 0.04708 111538 Average 0.01777 11.4062 0.04262 100769
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4.2.2 The real image alignment experiment

Furthermore, the real images acquired from a CCD camera, shown in Fig. 14, are tested under different
translation and rotation. The targets of the cell phone and the IC pattern were installed onto a positioning
table that can be rotated with a resolution of 0.01°. Table 3 shows the average errors are smaller than 0.05°
by using our alignment algorithm; it is superior to by Easyfind tool. The computation time in Table 3 also

shows our algorithm is more efficient than Easyfind tool.

N

MICROCHIP

PIC*Microcontrollers
5 Billion Shipped

November 2006

Fig. 14. The two real images for image alignment.

Table 3. Performance of the real image alignment algorithms.

P42.8GHz RAMI1G Esample-1 Irage Size 1360*1024 P42 3 GHz RAM LG Examgle-2 Image Size 1360%1024
Prop osed Method Evision-Easyfind Froposed Method Evision-Easyfind
Roiation angle( *) Exror angle( °) Execuie time(ms) Exror angle( °) Execuie time(ms) Rotation angle( °) Exror angle °) Execule timems) Exror angle( ©) Exec ute time (ms)

45 009 1178 0071 22 45 -008 1249 -0.034 17

9 0.134 1178 012 21 9 0,063 1274 0.014 20
135 0099 1201 0.087 26 13.5 0083 1217 0012 12
18 0033 1155 0026 21 13 -0.101 1172 -0.078 23
235 0.064 1215 0.071 13 225 0038 1192 -0.024 24
Fil 0.101 1205 0.106 a0 27 oot 1207 0025 24
31.5 0064 1174 0075 24 31.5 ns 1211 0022 25
36 0.004 119 0.009 21 36 0119 1139 -0.064 26
40.5 0004 1138 0.041 20 405 0018 1245 004 31
45 0.057 1187 0.067 19 45 0017 1234 0054 42
49.5 0015 1202 0.034 26 49.5 0047 1264 0.043 38
54 -0.044 1287 -0.019 21 54 0.157 1206 0013 40
58.5 -0.018 1187 0032 26 58.5 ] 1298 0023 3%
63 0.043 1104 0.053 25 63 0018 1285 0041 ]
67.5 0.031 118 0.028 Pl 675 0002 1196 0066 a8
72 0022 1162 0024 8 72 07t 1272 0005 53
7.5 0049 1205 03 2 765 0023 1208 004 43
&l 0.104 1149 0,033 31 21 006 1220 0.129 37
85.5 0,078 1188 0015 25 855 00852 1274 0094 2
90 0.04 1233 0.135 16 20 001 1279 DDz a
Average 0.0491 1 004345 £ Average -0.02355 12.3305 0.01815 33.55

5. CONCLUSION

In this paper, a fast image alignment algorithm based on connected component labeling and improved
moment invariants resulting in rotation, scale and translation invariant is presented. The new connected
component labeling algorithm combines a novel RLE and Urion Find algorithm to increase the
computational efficiency. After the labeling process, the boundary of object is detected using a contour
tracing technique. To reduce the computation of the traditional moment invariants, the improved moment
invariants are computed using the shape boundary only. The proposed fast image alignment algorithm
consists of a training phase and a matching phase in this paper. In training phase, the algorithm firstly finds
the moment invariants of selected shape in the reference image by using the proposed connected component
labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an
efficient pattern matching which is used the normalized minimum distance classifier is applied in matching
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phase. Finally, the orientation angle between the reference and inspected images is computed. Experimental

results show that the proposed connected component labeling algorithm and fast image alignment algorithm

is higher speed and accurate than the other algorithms and commercial software. Therefore, they could be

preprocessing tools used for the real-time industrial inspections.

[9]

[11]
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