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中文中文中文中文摘要摘要摘要摘要 本文提出一種基於物件標記與邊界矩之快速視覺定位技術。此技術分為兩階段；影像教導與定位處理。在影像教導中，應用物件標記法、輪廓追蹤技術及邊界不變矩，記錄選取目標之邊界不變矩，以利於後續定位處理之用。接著，定位處理以儲存的目標邊界不變矩為基礎，應用最小距離分類器來辨識待測影像中與教導目標最相似的物件，且此演算法不受待測影像旋轉、位移及縮放的影響。本文所提出之物件標記法，經由實驗證實，其效能較另外三種演算法快速，可符合工業上的需求。最後，以 IC 圖樣及手機面板之影像定位為測試標的，來驗證此定位演算法對於待測影像旋轉、位移與縮放之實用性，由實驗結果可看出本文所提出的物件標記及快速視覺定位演算法，可有效應用在視覺檢測之前處理工具上。 
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ABSTRACT 

This paper presents a fast image alignment algorithm based on connected component labeling and 

improved moment invariants resulting in rotation, scale and translation invariant. This algorithm consists of 

two phases: 1) the training phase, and 2) the matching phase. In training phase, the algorithm firstly finds the 

moment invariants of selected shape in the reference image by using the proposed connected component 

labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an 

efficient pattern matching, used the minimum distance classifier, between the selected shape in training 

phase and the candidate-shapes in the inspected image is applied in matching phase. Experimental results 

with LCD drive IC, print circuit board (PCB) and cellular phone images first show the proposed 

component-labeling algorithm is superior to the other three algorithms in computation loading. And the 

accurate and high speed alignment results reveal that the proposed alignment algorithms are computing 

efficient and invariant to rotation, scale and translation. Therefore, the proposed connected component 

labeling and image alignment algorithm could be the useful preprocessing tools in automated optical 

inspection (AOI). 

 

Keywords: Connected component labeling, Contour tracing technique, Improved moment invariants, 

Minimum distance classifier. 
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1. INTRODUCTION 

 

Image alignment is a fundamental technique for many applications of machine vision and image 

processing, including image search, object recognition, pose estimation, industrial inspection, target tracking, 

etc. Image alignment with a two-dimensional (2-D) rigid transformation is usually applied to industrial 

inspection under a well-controlled environment. The change in rotation of the pattern in the image is one of 

the most difficult conditions; therefore, the rotation-invariant matching schemes have been required in many 

industries of inspection. In addition, some vision applications need to be scale-invariant matched, so the 

image alignment algorithm should be able to accommodate variations in different rotation and scale 

conditions. 

Image alignment technique generally is divided into two major categories, area-based (or 

intensity-based) and feature-based (or geometry-based) methods [1]. Area-based method sometimes is called 

correlation-like or template matching method; has been very popular from the past due to the feature of basic 

ideas. Firstly, the small reference template is applied in a large scene image by sliding the template window 

in a pixel-by-pixel basis and the normalized cross correlation (NCC) is computed between the template and 

the scene image. Then, the maximum values or peaks of the computed correlation values indicate the 

matches between a template and sub-images in the scene. The NCC is most often used to suit the registration 

of images which only differs by a translation partially. If images are deformed by more complex 

transformations, the template window can not cover the same parts of the scene in the reference and sensed 

images. Therefore, several researchers proposed to modify the NCC for the complex transformations of 

images. In order to make the match invariant to rotation, a ring-projection transformation was proposed [2]. 

It transforms a two-dimensional (2D) gray-level image into a rotation-invariant representation in the 1D 

ring-projection space. Tsai and Chiang [3] further proposed the ring-projection to represent a target pattern in 

the wavelet decomposed detail sub-image, used only the pixels with high wavelet coefficients at lower 

resolution level to compute the NCC between two compare patterns. In addition, Choi and Kim [4] presented 

a two-stage image alignment method that first finds candidates by comparing the vector sums of 

ring-projection, and then these candidates are further matched based on the rotationally invariant Zernike 

moments.  

In the feature-based method, Huttenlocher et al. [5,6] applied the directed Hausdorff distance to develop 

efficient algorithms for image alignment. Kown et al. [7] proposed a robust hierarchical Hausdorff distance 

to compare edge maps in a multi-level pyramid structure. In addition, Chen et al. [8] used the Hausdorff 

distance for image alignment in PCB inspection system. Nevertheless, the above algorithms made the high 

computational cost when the image alignment involves rotation and scale compensation.  

Connected component labeling is a very important preprocessing of image alignment, and many 

algorithms of connected component labeling have been proposed. Suzuki et al [9] used a one-dimensional 

table that is able to memorize label equivalences, is used for uniting equivalent labels successively during the 

operations in forward and backward raster directions. Chang et al [10] further presented the one-pass 

component-labeling algorithm which is to use a contour tracing technique to detect the external contour and 

possible internal contours of each component. A general approach to handle the label equivalence 

information is to use Union-Find algorithm with pointer based rooted trees [11], and then Wu et al. [12] has 
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used an array instead of the pointer based rooted trees to speed the connected component labeling algorithm. 

However, the execution time of the above conventional algorithms can not be applied for the real-time 

applications. The component contour is often a useful resource for identifying objects, therefore, we propose 

a new algorithm for connected component labeling on binary images, and identify objects from improved 

moment invariants [13] which are derived from object contours. 

In this paper, a fast image alignment technique which combines the connected component labeling and 

improved moment invariants techniques is developed for industry inspection. This algorithm consists of two 

phases: 1) the training phase, and 2) the matching phase. In training phase, the algorithm firstly finds the 

moment invariants of selected shape in the reference image by using the proposed connected component 

labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an 

efficient pattern matching, used the minimum distance classifier, between the selected shape in training 

phase and the candidate-shapes in the inspected image is applied in matching phase. Experimental results 

show the proposed algorithm under a wide variation of rotation and scale is robust and computing efficient. 

Therefore, this could be a useful preprocessing tool in AOI.  

 

 

2. PROPOSED CONNECTED COMPONENT                             

LABELING AND IMPROVED MOMENT INVARIANTS 

 

The image alignment algorithm, proposed in this paper, includes three techniques: 1) proposed connected 

component labeling, 2) contour tracing technique, and 3) improved moment invariants. 

 

2.1 Proposed Connected Component Labeling 

A set of pixels in which each pixel is connected to all other pixels is called a connected component. The 

proposed connected component labeling algorithm finds all connected components in a binary image and 

assigns a unique label in the same component. The connected components are determined to find the object 

properties and locations. In this algorithm, we scan a binary image from left to right and from top to bottom 

per each line. First of all, a typical binary image shown in Fig. 1 is demonstrated the overview of this 

algorithm. Conceptually, we can divide the operations into three major steps that are illustrated in Fig. 1.  

The details of the three major steps are given below. 

 

Step 1-Obtain RLE: 

       The RLE is made by the use of spatial coherence in binary images, and we use the start and end position 

of runs each row to represent the image. The RLE structure is listed as following: 

 

Xs   : x-coordinate of the start position of a run 

Xe   : x-coordinate of the end position of a run. 

Y    : y-coordinate of a run. 

Next  : index of the next run. 
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(a) Running in the fourth row of the binary image. 

 

(b) Running in the fifth row of the binary image. 

Fig. 1. The proposed connected component labeling for binary image. 

 

Step 2-Connectivity: 

From step 1, we use RLE to carry out segment-wise instead of pixel-wise, and only two rows of the 

image are required in the connectivity step. Note that connectivity is an equivalence relation. For instance, 

from Fig. 1(a) to 1(b), the connectivity detecting and the connectivity RLE table are changed each row. If the 

8
th
 run in the 5

th
 row of the binary image is connected to the runs of the connectivity detecting table (Fig. 2), 

then union-find step must be executed. 

 

Step 3-Union Find: 

In this step, two connected blobs are successively merged into a whole blob tree, where the blob tree is a 

union of blobs. A typical blob tree is shown in Fig. 3. A function Union is used to merge the connected blobs. 

In Fig. 4(a), blob 1 is merged into blob 0, i.e. blob 0 becomes the parent of blob 1. Hence, the flag of blob 1 

is set as false which means blob 1 is not a root of the blob tree. Following the above process, we set the next 

of the run 6 as 1 and the next of the run 7 as 8, which means blob 0 includes the runs of blob 1, and then the 

last of blob 0 is set as 8. 
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    (a) 

 

                          (b)                                     (c) 

Fig. 2. (a) The binary Image. Connected to the (a) 0
th
. (b) 1

st
 run of the connectivity detecting table. 

 

 

Fig. 3. A blob tree with six blobs. 

 

A function FIND is used to identify the root of the blob tree. When a blob or blob tree connected to the 

other node, we use FIND to locate the root node of the connected blob tree. The label of this root node will 

represent the final blob label of the new whole blob tree. Therefore, the different blob trees will result in the 

same blob label when the corresponding nodes in different blob trees are connected together. 

The Union Find processes are demonstrated in Fig. 5 with two blob trees, in which the node 4 and node 

10 are connected together. Figure 5(a) shows the path of the FIND process, and the Union process is used to 

merge the node 6 into node 0. The final result after the Union Find processes is shown in Fig. 5(b). 

From above three steps, our algorithm is shown as a one-pass algorithm for labeling arbitrary connected 

components. In addition, we easily find that this algorithm has the following two good features. 

(1) Easy for post processing 

All of the pixel points in each blob can be traced out from the root of the blob tree. Therefore, when we 

need to do some processing on one blob, only the pixel points in this blob will be checked. We do not need to 

check the background points that belong to any other blobs. 

 

(2) Labeling gray image directly 

The input image can just be a gray image in our algorithm, but a binary image is needed in some 

traditional algorithms. This feature can save the time consumed for image binarization. 
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 (a)                                                                                                  (b) 

Fig. 4. (a) The UNION function, and (b) The FIND function in our algorithm. 
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Fig. 5. The Union Find processes with two blob trees. (a) Before the Union Find process (b) After the 

Union Find process. 

 

2.2 Contour Tracing Technique[10] 

As shown in Fig. 6, the goal of the contour tracing technique applied in this paper is to find an external 

contour at a given point, say F. We first execute a procedure called Tracer at point F. Tracer will output the 

contour point following F. Let this point be S, and then we continue to execute Tracer to find the contour 

point following S and so on, until the following two conditions hold: 1) Tracer outputs F and 2) the contour 

point following F is S. The procedure stops only when both conditions hold. In Fig. 6, when F is the starting 

point and S is the next contour point, the path traced by Tracer is FSTSFDEDF. 

 

Fig. 6. Tracing the contour of a component. 
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Fig. 7. (a) The neighboring points of P are indexed from 0 to 7. (b) If the previous contour point lies at 5, the 

next search direction is set on 7. 

 

For a given contour point P, the goal of Tracer is to find among P’s eight neighboring points. In Fig. 7(a), 

the position of each neighboring point of P is assigned to an index. The search proceeds in a clockwise 

direction from the initial position that is determined in the following way. 

In general, when P is not the starting point of a contour, its initial search position is set as d+2(mod 8), 

where d is the position of the previous contour point. For example, if the path traced by Tracer is FS in Fig. 6, 

i.e., the previous contour point exists and lies at position 5(Fig. 7(b)), then the initial position is set as index 7, 

the target path FST is found after the tracing process, i.e., the next is index 1.  

 

2.3 Improved Moment Invariants[13] 

The traditional moment invariants, computed based on the information provided by both the shape 

boundary and its interior region, have been frequently used as feature for shape recognition. To reduce the 

computation of the traditional moment invariants, the improved moment invariants are computed using the 

shape boundary only. 

Define the (p, q)
th
 modified moment as 
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C
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where ∫
C

is a line integral along the curve C, 
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similarly defined as 
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Eq. (2) can be represented as a discrete form 
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It can be easily verified that the central moments up to the order 3≤+ qp  could be computed as 
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The central moments are invariant to translation, and can also be normalized to a scaling change by the 

following formula.  
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The quantities in equation (5) are called normalized central moments. The following moment invariants 

were frequently used as features of shape recognition. 
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The quantities 41   , ≤≤ iiφ , were shown to invariant to scaling, translation, and rotation. The modified 

moment invariants are computed based on the shape boundary only, therefore, we call them improved 

moment invariants. 

 

 

3. FAST IMAGE ALIGNMENT 

 

In this section, a fast image alignment algorithm, integrated connected component labeling algorithm 

with improved moment invariants, is proposed. The connected component labeling combines run length 

encoding (RLE) and array-based Union Find algorithm to increase the computational efficiency. After the 

labeling process, the boundary of object is detected using a contour tracing technique. The improved moment 

invariants, based on the shape boundary, are presented to detect the specified object. The improved moment 

invariants technique reduces the computation loading because it only uses the boundary information of 

object and it is also invariant to scaling, translation, and rotation. The proposed fast image alignment 

algorithm can divided into training phase and matching phase. Figure 8 shows the procedures of these two 

phases.  
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Fig. 8. The fast image alignment algorithm. 

3.1 Training Phase 

The training phase is based on the reference image, and procedures of training phase are as follows. 

 

Step1:  Selecting two regions of interest (ROI) in reference image. 

Step2:  Selecting an appropriate threshold for the different inspection conditions. 

Step3:  The proposed connected component labeling is used to label the objects in above ROIs, and the 

labeled object areas are output for the matching phase. 

Step4:  After labeling process, the contour of the specified object is traced by using the contour tracing 

technique. 

Step5:  Here, the four improved moment invariants )2 1 4; 3, 2, 1,()( ,mi m
r

i ==φ  for the two training 

patterns detected in the reference image are calculated.  Finally, the improved moment invariants 

of selected shapes are output for the matching phase.   

 

3.2 Matching Phase 

The procedures of the matching phase based on inspected image are as follows. 

 

Step1:  The proposed connected component labeling is directly used to label the objects. A predetermined 

threshold is embedded to transfer the gray level image into binary image during the labeling 

process in order to save the time consumed for image binarization. 

Step2:  The contours of the labeling objects are traced under the area limitation, and then the improved 

moment invariants of the contours are computed. 
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Step3:  The minimum distance classification is evaluated for shape localization using the improved 

moment invariants. Let ) , 2, 1, 4; 3, 2, 1,()( kni n
s

i L==φ  denote the four moment invariants 

of the k objects detected in the inspected image. Then, the normalized distance of invariant-moment 

between the referenced objects m and inspected objects n is depicted as 
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The result of Eq. (7) is a 2k distance matrix in 4-D feature space, which represents the similarity 

relationship between the objects m and n. Using the principle of minimum distance classifier, the 

target object is selected when the smallest distance is met between the training patterns and the 

shapes in the inspected image. In this paper, two optimal objects are selected in the inspection 

image in order to estimate the orientation of image. 

Step4:  Finally, the orientation angle between the reference and inspected image is computed. Figure 9 

represents the geometric relationship between reference image 1 and inspected image 2, where 

shape 1 and 2 are the corresponding left and right targets. The vectors between the geometric 

centers of left and right targets in reference and inspected images are depicted as 
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, respectively. And LRLR yyxx 1111 ,,,  are the horizontal and vertical coordinates of reference image; 

2 2 2 2, , ,R L R Lx x y y  are the horizontal and vertical coordinates of inspected image. Then, the 

orientation angle between the reference and inspected image is computed as 

                         
( ) ( ) ( ) ( ) 














∆+∆⋅∆+∆

∆⋅∆+∆⋅∆
=















⋅

⋅
=

−

−

2

2

2

2

2

1

2

1

21211

21

211

cos   

cos

yxyx

yyxx

PP

PP
vv

vv

θ

            (10) 

 



 11 

 

Fig. 9. The orientation estimation procedure. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The experimental results contain two parts. In the first part, the proposed component-labeling algorithm 

is compared with the other three algorithms which are a recently published algorithm [10] (Chang’s 

algorithm) and two commercial software, Mil and eVision. In the second part, the proposed image alignment 

algorithm is compared with the Easyfind tool of eVision. The test platform is a PC equipped with P4-2.8G 

CPU and 1G MB RAM. 

 

4.1 Testing on Connected Component Labeling Algorithm 

In the experiments, the LCD driver IC images with 2 different resolutions (1000×1000 and 1360×1024) 

were used, shown in Fig. 10. Table 1 indicates the comparison datum in detail and Fig. 11 shows the 

performances between our proposed algorithm and the other algorithms. In the table and figure, the density 

means the ratio of labeled objects to the full image with number of pixel. No matter what image resolution is, 

our algorithm is more efficient than the other three algorithms. Moreover, Fig. 12 shows the execution time 

is almost same in both our proposed algorithm and Mil 5.12 when the image size increased.  

              

                    (a)                                              (b) 

Fig. 10. (a) The LCD driver IC image (b) The driver IC image after image binarization. 
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Table 1. Performance of the four algorithms. 
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                   (a)                                           (b) 

Fig. 11. Performances of the four algorithms for the (a) 1000×1000 (b) 1360×1024 driver IC images . 

 

 

Fig. 12. Performances of the four algorithms for the different image sizes. 
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4.2 Fast Image Alignment Experiment 

In fast image alignment experiment, the simulated and real images are prepared to verify the alignment 

algorithm. The simulated alignment experiments demonstrate the efficiency of the proposed image alignment 

algorithm under different simulated translation and rotation conditions. Then, the real images acquired from 

CCD camera with translation and rotation variations are prepared to validate the robustness of the proposed 

algorithm. The proposed image alignment algorithm is compared with the Easyfind tool of eVision in the 

above experiments. 

 

4.2.1 The simulated alignment experiment 

The synthesized images with different translation and rotation are used to verify the proposed image 

alignment algorithm. There are three original images, depicted in Fig. 13, with different image size 768×576, 

1024×768 and 1360×1024, respectively. For each dataset, we simulate 13 images with different translation 

and rotation values from the original image. Table 2 shows that the proposed algorithm gets more accurate 

alignment errors and the faster computing time than Easyfind under different image size.   

 

   

(a)                        (b)                        (c)  

Fig. 13. The three images with different image size. (a) 768×576. (b) 1024×768. (c) 1360×1024. 

 

Table 2. Performance of the simulated image alignment algorithms. 
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4.2.2 The real image alignment experiment 

Furthermore, the real images acquired from a CCD camera, shown in Fig. 14, are tested under different 

translation and rotation. The targets of the cell phone and the IC pattern were installed onto a positioning 

table that can be rotated with a resolution of 0.01°. Table 3 shows the average errors are smaller than 0.05° 

by using our alignment algorithm; it is superior to by Easyfind tool. The computation time in Table 3 also 

shows our algorithm is more efficient than Easyfind tool.  

                

Fig. 14. The two real images for image alignment. 

 

Table 3. Performance of the real image alignment algorithms. 

 

 

 

5. CONCLUSION 

 

In this paper, a fast image alignment algorithm based on connected component labeling and improved 

moment invariants resulting in rotation, scale and translation invariant is presented. The new connected 

component labeling algorithm combines a novel RLE and Union Find algorithm to increase the 

computational efficiency. After the labeling process, the boundary of object is detected using a contour 

tracing technique. To reduce the computation of the traditional moment invariants, the improved moment 

invariants are computed using the shape boundary only. The proposed fast image alignment algorithm 

consists of a training phase and a matching phase in this paper. In training phase, the algorithm firstly finds 

the moment invariants of selected shape in the reference image by using the proposed connected component 

labeling algorithm, contour tracing technique, and improved moment invariants technique. Subsequently, an 

efficient pattern matching which is used the normalized minimum distance classifier is applied in matching 
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phase. Finally, the orientation angle between the reference and inspected images is computed. Experimental 

results show that the proposed connected component labeling algorithm and fast image alignment algorithm 

is higher speed and accurate than the other algorithms and commercial software. Therefore, they could be 

preprocessing tools used for the real-time industrial inspections. 
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